summaryrefslogtreecommitdiff
path: root/lib/Data/Packed/Internal/Vector.hs
blob: 1b572a5a65a9a3b4185b99cba7ec93bcb1a4544e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
{-# LANGUAGE MagicHash, CPP, UnboxedTuples, BangPatterns #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Packed.Internal.Vector
-- Copyright   :  (c) Alberto Ruiz 2007
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable (uses FFI)
--
-- Vector implementation
--
-----------------------------------------------------------------------------
-- #hide

module Data.Packed.Internal.Vector where

import Data.Packed.Internal.Common
import Foreign
import Foreign.C.Types(CInt)
import Complex
import Control.Monad(when)

#if __GLASGOW_HASKELL__ >= 605
import GHC.ForeignPtr           (mallocPlainForeignPtrBytes)
#else
import Foreign.ForeignPtr       (mallocForeignPtrBytes)
#endif

import GHC.Base
import GHC.IOBase

-- | A one-dimensional array of objects stored in a contiguous memory block.
data Vector t =
    V { dim  :: {-# UNPACK #-} !Int               -- ^ number of elements
      , fptr :: {-# UNPACK #-} !(ForeignPtr t)    -- ^ foreign pointer to the memory block
      }

-- C-Haskell vector adapter
vec :: Adapt (CInt -> Ptr t -> r) (Vector t) r
vec = withVector

withVector (V n fp) f = withForeignPtr fp $ \p -> do
    let v g = do
        g (fi n) p
    f v

-- allocates memory for a new vector
createVector :: Storable a => Int -> IO (Vector a)
createVector n = do
    when (n <= 0) $ error ("trying to createVector of dim "++show n)
    fp <- doMalloc undefined
    return $ V n fp
  where
    --
    -- Use the much cheaper Haskell heap allocated storage
    -- for foreign pointer space we control
    --
    doMalloc :: Storable b => b -> IO (ForeignPtr b)
    doMalloc dummy = do
#if __GLASGOW_HASKELL__ >= 605
        mallocPlainForeignPtrBytes (n * sizeOf dummy)
#else
        mallocForeignPtrBytes      (n * sizeOf dummy)
#endif

{- | creates a Vector from a list:

@> fromList [2,3,5,7]
4 |> [2.0,3.0,5.0,7.0]@

-}
fromList :: Storable a => [a] -> Vector a
fromList l = unsafePerformIO $ do
    v <- createVector (length l)
    let f _ p = pokeArray p l >> return 0
    app1 f vec v "fromList"
    return v

safeRead v = inlinePerformIO . withForeignPtr (fptr v)
{-# INLINE safeRead #-}

inlinePerformIO :: IO a -> a
inlinePerformIO (IO m) = case m realWorld# of (# _, r #) -> r
{-# INLINE inlinePerformIO #-}

{- | extracts the Vector elements to a list

@> toList (linspace 5 (1,10))
[1.0,3.25,5.5,7.75,10.0]@

-}
toList :: Storable a => Vector a -> [a]
toList v = safeRead v $ peekArray (dim v)

{- | An alternative to 'fromList' with explicit dimension. The input
     list is explicitly truncated if it is too long, so it may safely
     be used, for instance, with infinite lists.

     This is the format used in the instances for Show (Vector a).
-}
(|>) :: (Storable a) => Int -> [a] -> Vector a
infixl 9 |>
n |> l = if length l' == n
            then fromList l'
            else error "list too short for |>"
  where l' = take n l


-- | access to Vector elements without range checking
at' :: Storable a => Vector a -> Int -> a
at' v n = safeRead v $ flip peekElemOff n
{-# INLINE at' #-}

--
-- turn off bounds checking with -funsafe at configure time.
-- ghc will optimise away the salways true case at compile time.
--
#if defined(UNSAFE)
safe :: Bool
safe = False
#else
safe = True
#endif

-- | access to Vector elements with range checking.
at :: Storable a => Vector a -> Int -> a
at v n
    | safe      = if n >= 0 && n < dim v
                    then at' v n
                    else error "vector index out of range"
    | otherwise = at' v n
{-# INLINE at #-}

{- | takes a number of consecutive elements from a Vector

@> subVector 2 3 (fromList [1..10])
3 |> [3.0,4.0,5.0]@

-}
subVector :: Storable t => Int       -- ^ index of the starting element
                        -> Int       -- ^ number of elements to extract
                        -> Vector t  -- ^ source
                        -> Vector t  -- ^ result
subVector k l (v@V {dim=n})
    | k<0 || k >= n || k+l > n || l < 0 = error "subVector out of range"
    | otherwise = unsafePerformIO $ do
        r <- createVector l
        let f _ s _ d = copyArray d (advancePtr s k) l >> return 0
        app2 f vec v vec r "subVector"
        return r

{- | Reads a vector position:

@> fromList [0..9] \@\> 7
7.0@

-}
(@>) :: Storable t => Vector t -> Int -> t
infixl 9 @>
(@>) = at


{- | creates a new Vector by joining a list of Vectors

@> join [fromList [1..5], constant 1 3]
8 |> [1.0,2.0,3.0,4.0,5.0,1.0,1.0,1.0]@

-}
join :: Storable t => [Vector t] -> Vector t
join [] = error "joining zero vectors"
join as = unsafePerformIO $ do
    let tot = sum (map dim as)
    r@V {fptr = p} <- createVector tot
    withForeignPtr p $ \ptr ->
        joiner as tot ptr
    return r
  where joiner [] _ _ = return ()
        joiner (V {dim = n, fptr = b} : cs) _ p = do
            withForeignPtr b $ \pb -> copyArray p pb n
            joiner cs 0 (advancePtr p n)


-- | transforms a complex vector into a real vector with alternating real and imaginary parts 
asReal :: Vector (Complex Double) -> Vector Double
asReal v = V { dim = 2*dim v, fptr =  castForeignPtr (fptr v) }

-- | transforms a real vector into a complex vector with alternating real and imaginary parts
asComplex :: Vector Double -> Vector (Complex Double)
asComplex v = V { dim = dim v `div` 2, fptr =  castForeignPtr (fptr v) }

----------------------------------------------------------------

liftVector f x = mapVector f x

liftVector2 f u v = zipVector f u v

-----------------------------------------------------------------

cloneVector :: Storable t => Vector t -> IO (Vector t)
cloneVector (v@V {dim=n}) = do
        r <- createVector n
        let f _ s _ d =  copyArray d s n >> return 0
        app2 f vec v vec r "cloneVector"
        return r

------------------------------------------------------------------

-- | map on Vectors
mapVector :: (Storable a, Storable b) => (a-> b) -> Vector a -> Vector b
mapVector f v = unsafePerformIO $ do
    w <- createVector (dim v)
    withForeignPtr (fptr v) $ \p ->
        withForeignPtr (fptr w) $ \q -> do
            let go (-1) = return ()
                go !k = do x <- peekElemOff p k
                           pokeElemOff      q k (f x)
                           go (k-1)
            go (dim v -1)
    return w
{-# INLINE mapVector #-}

-- | zipWith for Vectors
zipVector :: (Storable a, Storable b, Storable c) => (a-> b -> c) -> Vector a -> Vector b -> Vector c
zipVector f u v = unsafePerformIO $ do
    let n = min (dim u) (dim v)
    w <- createVector n
    withForeignPtr (fptr u) $ \pu ->
        withForeignPtr (fptr v) $ \pv ->
            withForeignPtr (fptr w) $ \pw -> do
                let go (-1) = return ()
                    go !k = do x <- peekElemOff pu k
                               y <- peekElemOff pv k
                               pokeElemOff      pw k (f x y)
                               go (k-1)
                go (n -1)
    return w
{-# INLINE zipVector #-}

foldVector f x v = unsafePerformIO $
    withForeignPtr (fptr (v::Vector Double)) $ \p -> do
        let go (-1) s = return s
            go !k !s = do y <- peekElemOff p k
                          go (k-1::Int) (f y s)
        go (dim v -1) x
{-# INLINE foldVector #-}

foldLoop f s0 d = go (d - 1) s0
     where
       go 0 s = f (0::Int) s
       go !j !s = go (j - 1) (f j s)

foldVectorG f s0 v = foldLoop g s0 (dim v)
    where g !k !s = f k (at' v) s
          {-# INLINE g #-} -- Thanks to Ryan Ingram (http://permalink.gmane.org/gmane.comp.lang.haskell.cafe/46479)
{-# INLINE foldVectorG #-}