summaryrefslogtreecommitdiff
path: root/lib/Numeric/Container.hs
blob: 0fecf86beaee717d4cfc45224069a3de9420ae6f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Numeric.Container
-- Copyright   :  (c) Alberto Ruiz 2010
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable
--
-- Numeric classes for containers of numbers, including conversion routines
--
-----------------------------------------------------------------------------

module Numeric.Container (
    Container(..),
    Product(..),
    mXm,mXv,vXm,
    outer, kronecker,

    Convert(..),
    Complexable(),
    RealElement(),

    RealOf, ComplexOf, SingleOf, DoubleOf,

    IndexOf,
    module Data.Complex
) where

import Data.Packed
import Numeric.Conversion
import Data.Packed.Internal
import Numeric.GSL.Vector

import Data.Complex
import Control.Monad(ap)

import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)

-------------------------------------------------------------------

type family IndexOf c

type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)

-------------------------------------------------------------------

-- | Basic element-by-element functions for numeric containers
class (Complexable c, Element e) => Container c e where
    -- | create a structure with a single element
    scalar      :: e -> c e
    -- | complex conjugate
    conj        :: c e -> c e
    scale       :: e -> c e -> c e
    -- | scale the element by element reciprocal of the object:
    --
    -- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
    scaleRecip  :: e -> c e -> c e
    addConstant :: e -> c e -> c e
    add         :: c e -> c e -> c e
    sub         :: c e -> c e -> c e
    -- | element by element multiplication
    mul         :: c e -> c e -> c e
    -- | element by element division
    divide      :: c e -> c e -> c e
    equal       :: c e -> c e -> Bool
    --
    -- | cannot implement instance Functor because of Element class constraint
    cmap        :: (Element a, Element b) => (a -> b) -> c a -> c b
    -- | constant structure of given size
    konst       :: e -> IndexOf c -> c e
    --
    -- | indexing function
    atIndex     :: c e -> IndexOf c -> e
    -- | index of min element
    minIndex    :: c e -> IndexOf c
    -- | index of max element
    maxIndex    :: c e -> IndexOf c
    -- | value of min element
    minElement  :: c e -> e
    -- | value of max element
    maxElement  :: c e -> e
    -- the C functions sumX/prodX are twice as fast as using foldVector
    -- | the sum of elements (faster than using @fold@)
    sumElements :: c e -> e
    -- | the product of elements (faster than using @fold@)
    prodElements :: c e -> e

-- -- | Basic element-by-element functions.
-- class (Element e, Container c e) => Linear c e where


--------------------------------------------------------------------------

instance Container Vector Float where
    scale = vectorMapValF Scale
    scaleRecip = vectorMapValF Recip
    addConstant = vectorMapValF AddConstant
    add = vectorZipF Add
    sub = vectorZipF Sub
    mul = vectorZipF Mul
    divide = vectorZipF Div
    equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
    scalar x = fromList [x]
    konst = constantD
    conj = conjugateD
    cmap = mapVector
    atIndex = (@>)
    minIndex     = round . toScalarF MinIdx
    maxIndex     = round . toScalarF MaxIdx
    minElement  = toScalarF Min
    maxElement  = toScalarF Max
    sumElements  = sumF
    prodElements = prodF

instance Container Vector Double where
    scale = vectorMapValR Scale
    scaleRecip = vectorMapValR Recip
    addConstant = vectorMapValR AddConstant
    add = vectorZipR Add
    sub = vectorZipR Sub
    mul = vectorZipR Mul
    divide = vectorZipR Div
    equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
    scalar x = fromList [x]
    konst = constantD
    conj = conjugateD
    cmap = mapVector
    atIndex = (@>)
    minIndex     = round . toScalarR MinIdx
    maxIndex     = round . toScalarR MaxIdx
    minElement  = toScalarR Min
    maxElement  = toScalarR Max
    sumElements  = sumR
    prodElements = prodR

instance Container Vector (Complex Double) where
    scale = vectorMapValC Scale
    scaleRecip = vectorMapValC Recip
    addConstant = vectorMapValC AddConstant
    add = vectorZipC Add
    sub = vectorZipC Sub
    mul = vectorZipC Mul
    divide = vectorZipC Div
    equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
    scalar x = fromList [x]
    konst = constantD
    conj = conjugateD
    cmap = mapVector
    atIndex = (@>)
    minIndex     = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    maxIndex     = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    minElement  = ap (@>) minIndex
    maxElement  = ap (@>) maxIndex
    sumElements  = sumC
    prodElements = prodC

instance Container Vector (Complex Float) where
    scale = vectorMapValQ Scale
    scaleRecip = vectorMapValQ Recip
    addConstant = vectorMapValQ AddConstant
    add = vectorZipQ Add
    sub = vectorZipQ Sub
    mul = vectorZipQ Mul
    divide = vectorZipQ Div
    equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
    scalar x = fromList [x]
    konst = constantD
    conj = conjugateD
    cmap = mapVector
    atIndex = (@>)
    minIndex     = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    maxIndex     = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    minElement  = ap (@>) minIndex
    maxElement  = ap (@>) maxIndex
    sumElements  = sumQ
    prodElements = prodQ

---------------------------------------------------------------

instance (Container Vector a) => Container Matrix a where
    scale x = liftMatrix (scale x)
    scaleRecip x = liftMatrix (scaleRecip x)
    addConstant x = liftMatrix (addConstant x)
    add = liftMatrix2 add
    sub = liftMatrix2 sub
    mul = liftMatrix2 mul
    divide = liftMatrix2 divide
    equal a b = cols a == cols b && flatten a `equal` flatten b
    scalar x = (1><1) [x]
    konst v (r,c) = reshape c (konst v (r*c))
    conj = liftMatrix conjugateD
    cmap f = liftMatrix (mapVector f)
    atIndex = (@@>)
    minIndex m = let (r,c) = (rows m,cols m)
                     i = (minIndex $ flatten m)
                 in (i `div` c,i `mod` c)
    maxIndex m = let (r,c) = (rows m,cols m)
                     i = (maxIndex $ flatten m)
                 in (i `div` c,i `mod` c)
    minElement = ap (@@>) minIndex
    maxElement = ap (@@>) maxIndex
    sumElements = sumElements . flatten
    prodElements = prodElements . flatten

----------------------------------------------------


-- | Matrix product and related functions
class Element e => Product e where
    -- | matrix product
    multiply :: Matrix e -> Matrix e -> Matrix e
    -- | dot (inner) product
    dot        :: Vector e -> Vector e -> e
    -- | sum of absolute value of elements (differs in complex case from @norm1@)
    absSum     :: Vector e -> RealOf e
    -- | sum of absolute value of elements
    norm1      :: Vector e -> RealOf e
    -- | euclidean norm
    norm2      :: Vector e -> RealOf e
    -- | element of maximum magnitude
    normInf    :: Vector e -> RealOf e

instance Product Float where
    norm2      = toScalarF Norm2
    absSum     = toScalarF AbsSum
    dot        = dotF
    norm1      = toScalarF AbsSum
    normInf    = maxElement . vectorMapF Abs
    multiply = multiplyF

instance Product Double where
    norm2      = toScalarR Norm2
    absSum     = toScalarR AbsSum
    dot        = dotR
    norm1      = toScalarR AbsSum
    normInf    = maxElement . vectorMapR Abs
    multiply = multiplyR

instance Product (Complex Float) where
    norm2      = toScalarQ Norm2
    absSum     = toScalarQ AbsSum
    dot        = dotQ
    norm1      = sumElements . fst . fromComplex . vectorMapQ Abs
    normInf    = maxElement . fst . fromComplex . vectorMapQ Abs
    multiply = multiplyQ

instance Product (Complex Double) where
    norm2      = toScalarC Norm2
    absSum     = toScalarC AbsSum
    dot        = dotC
    norm1      = sumElements . fst . fromComplex . vectorMapC Abs
    normInf    = maxElement . fst . fromComplex . vectorMapC Abs
    multiply = multiplyC

----------------------------------------------------------

-- synonym for matrix product
mXm :: Product t => Matrix t -> Matrix t -> Matrix t
mXm = multiply

-- matrix - vector product
mXv :: Product t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)

-- vector - matrix product
vXm :: Product t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m

{- | Outer product of two vectors.

@\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3]
(3><3)
 [  5.0, 2.0, 3.0
 , 10.0, 4.0, 6.0
 , 15.0, 6.0, 9.0 ]@
-}
outer :: (Product t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v

{- | Kronecker product of two matrices.

@m1=(2><3)
 [ 1.0,  2.0, 0.0
 , 0.0, -1.0, 3.0 ]
m2=(4><3)
 [  1.0,  2.0,  3.0
 ,  4.0,  5.0,  6.0
 ,  7.0,  8.0,  9.0
 , 10.0, 11.0, 12.0 ]@

@\> kronecker m1 m2
(8><9)
 [  1.0,  2.0,  3.0,   2.0,   4.0,   6.0,  0.0,  0.0,  0.0
 ,  4.0,  5.0,  6.0,   8.0,  10.0,  12.0,  0.0,  0.0,  0.0
 ,  7.0,  8.0,  9.0,  14.0,  16.0,  18.0,  0.0,  0.0,  0.0
 , 10.0, 11.0, 12.0,  20.0,  22.0,  24.0,  0.0,  0.0,  0.0
 ,  0.0,  0.0,  0.0,  -1.0,  -2.0,  -3.0,  3.0,  6.0,  9.0
 ,  0.0,  0.0,  0.0,  -4.0,  -5.0,  -6.0, 12.0, 15.0, 18.0
 ,  0.0,  0.0,  0.0,  -7.0,  -8.0,  -9.0, 21.0, 24.0, 27.0
 ,  0.0,  0.0,  0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@
-}
kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
              . splitEvery (cols a)
              . map (reshape (cols b))
              . toRows
              $ flatten a `outer` flatten b

-------------------------------------------------------------------


class Convert t where
    real    :: Container c t => c (RealOf t) -> c t
    complex :: Container c t => c t -> c (ComplexOf t)
    single  :: Container c t => c t -> c (SingleOf t)
    double  :: Container c t => c t -> c (DoubleOf t)
    toComplex   :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t)
    fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t)


instance Convert Double where
    real = id
    complex = comp'
    single = single'
    double = id
    toComplex = toComplex'
    fromComplex = fromComplex'

instance Convert Float where
    real = id
    complex = comp'
    single = id
    double = double'
    toComplex = toComplex'
    fromComplex = fromComplex'

instance Convert (Complex Double) where
    real = comp'
    complex = id
    single = single'
    double = id
    toComplex = toComplex'
    fromComplex = fromComplex'

instance Convert (Complex Float) where
    real = comp'
    complex = id
    single = id
    double = double'
    toComplex = toComplex'
    fromComplex = fromComplex'

-------------------------------------------------------------------

type family RealOf x

type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double

type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float

type family ComplexOf x

type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double

type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float

type family SingleOf x

type instance SingleOf Double = Float
type instance SingleOf Float  = Float

type instance SingleOf (Complex a) = Complex (SingleOf a)

type family DoubleOf x

type instance DoubleOf Double = Double
type instance DoubleOf Float  = Double

type instance DoubleOf (Complex a) = Complex (DoubleOf a)

type family ElementOf c

type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a