summaryrefslogtreecommitdiff
path: root/lib/Numeric/Container.hs
blob: ed6714ff14794650b09d18285dfa76bd0672792e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Numeric.Container
-- Copyright   :  (c) Alberto Ruiz 2010-14
-- License     :  GPL
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable
--
-- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines.
--
-- The 'Container' class is used to define optimized generic functions which work
-- on 'Vector' and 'Matrix' with real or complex elements.
--
-- Some of these functions are also available in the instances of the standard
-- numeric Haskell classes provided by "Numeric.LinearAlgebra".
--
-----------------------------------------------------------------------------

module Numeric.Container (
    -- * Basic functions
    module Data.Packed,
    constant, linspace,
    diag, ident,
    ctrans,
    -- * Generic operations
    Container(..),
    -- * Matrix product
    Product(..),
    Contraction(..),
    optimiseMult,
    mXm,mXv,vXm,Mul(..),LSDiv(..), cdot,
    outer, kronecker,
    -- * Random numbers
    RandDist(..),
    randomVector,
    gaussianSample,
    uniformSample,
    meanCov,
    -- * Element conversion
    Convert(..),
    Complexable(),
    RealElement(),

    RealOf, ComplexOf, SingleOf, DoubleOf,

    IndexOf,
    module Data.Complex,
    -- * Input / Output
    dispf, disps, dispcf, vecdisp, latexFormat, format,
    loadMatrix, saveMatrix, fromFile, fileDimensions,
    readMatrix,
    fscanfVector, fprintfVector, freadVector, fwriteVector,
    -- * Experimental
    build', konst'
) where

import Data.Packed
import Data.Packed.Internal(constantD)
import Numeric.ContainerBoot
import Numeric.Chain
import Numeric.IO
import Data.Complex
import Numeric.LinearAlgebra.Algorithms(Field,linearSolveSVD)
import Data.Packed.Random

------------------------------------------------------------------

{- | creates a vector with a given number of equal components:

@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD-- about 2x faster

{- | Creates a real vector containing a range of values:

@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@

Logarithmic spacing can be defined as follows:

@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Container Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
    where s = (b-a)/fromIntegral (n-1)

-- | dot product: @cdot u v = 'udot' ('conj' u) v@
cdot :: (Container Vector t, Product t) => Vector t -> Vector t -> t
cdot u v = udot (conj u) v

--------------------------------------------------------

class Mul a b c | a b -> c where
 infixl 7 <>
 -- | Matrix-matrix, matrix-vector, and vector-matrix products.
 (<>)  :: Product t => a t -> b t -> c t

instance Mul Matrix Matrix Matrix where
    (<>) = mXm

instance Mul Matrix Vector Vector where
    (<>) m v = flatten $ m <> asColumn v

instance Mul Vector Matrix Vector where
    (<>) v m = flatten $ asRow v <> m

--------------------------------------------------------

class LSDiv b c | b -> c, c->b where
 infixl 7 <\>
 -- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD)
 (<\>)  :: Field t => Matrix t -> b t -> c t

instance LSDiv Vector Vector where
    m <\> v = flatten (linearSolveSVD m (reshape 1 v))

instance LSDiv Matrix Matrix where
    (<\>) = linearSolveSVD

--------------------------------------------------------

-- | Compute mean vector and covariance matrix of the rows of a matrix.
meanCov :: Matrix Double -> (Vector Double, Matrix Double)
meanCov x = (med,cov) where
    r    = rows x
    k    = 1 / fromIntegral r
    med  = konst k r `vXm` x
    meds = konst 1 r `outer` med
    xc   = x `sub` meds
    cov  = scale (recip (fromIntegral (r-1))) (trans xc `mXm` xc)

--------------------------------------------------------------------------------

-- | matrix-matrix product, matrix-vector product, unconjugated dot product, and scaling
class Contraction a b c | a b -> c
  where
    -- ^ 0x00d7 multiplication sign
    infixl 7 ×
    (×) :: a -> b -> c

instance Product t => Contraction (Vector t) (Vector t) t where
    (×) = udot

instance Product t => Contraction (Matrix t) (Vector t) (Vector t) where
    (×) = mXv

instance Product t => Contraction (Vector t) (Matrix t) (Vector t) where
    (×) = vXm

instance Product t => Contraction (Matrix t) (Matrix t) (Matrix t) where
    (×) = mXm

instance Container Vector t => Contraction t (Vector t) (Vector t) where
    (×) = scale

instance Container Vector t => Contraction (Vector t) t (Vector t) where
    (×) = flip scale

instance Container Matrix t => Contraction t (Matrix t) (Matrix t) where
    (×) = scale

instance Container Matrix t => Contraction (Matrix t) t (Matrix t) where
    (×) = flip scale