1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Container
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Numeric classes for containers of numbers, including conversion routines
--
-----------------------------------------------------------------------------
module Numeric.Container (
Linear(..),
Container(..), RealElement, Precision(..), NumericContainer(..), comp,
Convert(..), --AutoReal(..),
RealOf, ComplexOf, SingleOf, DoubleOf,
-- ElementOf,
IndexOf,
module Data.Complex
) where
import Data.Packed.Vector
import Data.Packed.Matrix
import Data.Packed.Internal.Vector
--import Data.Packed.Internal.Matrix
--import qualified Data.Packed.ST as ST
--import Control.Arrow((***))
import Data.Complex
-------------------------------------------------------------------
-- | Supported single-double precision type pairs
class (Element s, Element d) => Precision s d | s -> d, d -> s where
double2FloatG :: Vector d -> Vector s
float2DoubleG :: Vector s -> Vector d
instance Precision Float Double where
double2FloatG = double2FloatV
float2DoubleG = float2DoubleV
instance Precision (Complex Float) (Complex Double) where
double2FloatG = asComplex . double2FloatV . asReal
float2DoubleG = asComplex . float2DoubleV . asReal
-- | Supported real types
class (Element t, Element (Complex t), RealFloat t
-- , RealOf t ~ t, RealOf (Complex t) ~ t
)
=> RealElement t
instance RealElement Double
instance RealElement Float
-- | Conversion utilities
class NumericContainer c where
toComplex :: (RealElement e) => (c e, c e) -> c (Complex e)
fromComplex :: (RealElement e) => c (Complex e) -> (c e, c e)
complex' :: (RealElement e) => c e -> c (Complex e)
conj :: (RealElement e) => c (Complex e) -> c (Complex e)
-- cmap :: (Element a, Element b) => (a -> b) -> c a -> c b
single' :: Precision a b => c b -> c a
double' :: Precision a b => c a -> c b
-- | a synonym for "complex'"
comp :: (NumericContainer c, RealElement e) => c e -> c (Complex e)
comp x = complex' x
-------------------------------------------------------------------
type family RealOf x
type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double
type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float
type family ComplexOf x
type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double
type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float
type family SingleOf x
type instance SingleOf Double = Float
type instance SingleOf Float = Float
type instance SingleOf (Complex a) = Complex (SingleOf a)
type family DoubleOf x
type instance DoubleOf Double = Double
type instance DoubleOf Float = Double
type instance DoubleOf (Complex a) = Complex (DoubleOf a)
type family ElementOf c
type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a
type family IndexOf c
type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)
-------------------------------------------------------------------
class (Element t, Element (RealOf t)) => Convert t where
real :: NumericContainer c => c (RealOf t) -> c t
complex :: NumericContainer c => c t -> c (ComplexOf t)
single :: NumericContainer c => c t -> c (SingleOf t)
double :: NumericContainer c => c t -> c (DoubleOf t)
instance Convert Double where
real = id
complex = complex'
single = single'
double = id
instance Convert Float where
real = id
complex = complex'
single = id
double = double'
instance Convert (Complex Double) where
real = complex'
complex = id
single = single'
double = id
instance Convert (Complex Float) where
real = complex'
complex = id
single = id
double = double'
-------------------------------------------------------------------
-- | to be replaced by Convert
class Convert t => AutoReal t where
real'' :: NumericContainer c => c Double -> c t
complex'' :: NumericContainer c => c t -> c (Complex Double)
instance AutoReal Double where
real'' = real
complex'' = complex
instance AutoReal (Complex Double) where
real'' = real
complex'' = complex
instance AutoReal Float where
real'' = real . single
complex'' = double . complex
instance AutoReal (Complex Float) where
real'' = real . single
complex'' = double . complex
-------------------------------------------------------------------
-- | Basic element-by-element functions for numeric containers
class (Element e) => Container c e where
{-
-- | create a structure with a single element
scalar :: e -> c e
-- | multiply every element by a scalar
scale :: e -> c e -> c e
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: e -> c e -> c e
-- | add a constant to each element
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
-- | element by element division
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
-}
-- | cannot implement instance Functor because of Element class constraint
cmap :: (Element a, Element b) => (a -> b) -> c a -> c b
--
-- | indexing function
atIndex :: c e -> IndexOf c -> e
-- | index of min/max element
minIndex :: c e -> IndexOf c
maxIndex :: c e -> IndexOf c
-- | value of min/max element
minElement :: c e -> e
maxElement :: c e -> e
-- the C functions sumX/prodX are twice as fast as using foldVector
-- | the sum/product of elements (faster than using @fold@
sumElements :: c e -> e
prodElements :: c e -> e
-- | Basic element-by-element functions.
class (Element e, Container c e) => Linear c e where
-- | create a structure with a single element
scalar :: e -> c e
scale :: e -> c e -> c e
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
-- | element by element division
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
|