summaryrefslogtreecommitdiff
path: root/lib/Numeric/Container.hs
blob: 45b33e01b23fcf36e30e297731e6d266833e7b83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Numeric.Container
-- Copyright   :  (c) Alberto Ruiz 2010
-- License     :  GPL-style
--
-- Maintainer  :  Alberto Ruiz <aruiz@um.es>
-- Stability   :  provisional
-- Portability :  portable
--
-- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines.
--
-- The 'Container' class is used to define optimized generic functions which work
-- on 'Vector' and 'Matrix' with real or complex elements.
--
-- Some of these functions are also available in the instances of the standard
-- numeric Haskell classes provided by "Numeric.LinearAlgebra".
--
-----------------------------------------------------------------------------

module Numeric.Container (
    -- * Basic functions
    module Data.Packed,
    constant, linspace,
    diag, ident,
    ctrans,
    -- * Generic operations
    Container(..),
    -- * Matrix product
    Product(..),
    optimiseMult,
    mXm,mXv,vXm,(<.>),(<>),(<\>),
    outer, kronecker,
    -- * Random numbers
    RandDist(..),
    randomVector,
    gaussianSample,
    uniformSample,
    meanCov,
    -- * Element conversion
    Convert(..),
    Complexable(),
    RealElement(),

    RealOf, ComplexOf, SingleOf, DoubleOf,

    IndexOf,
    module Data.Complex,
    -- * Input / Output
    dispf, disps, dispcf, vecdisp, latexFormat, format,
    loadMatrix, saveMatrix, fromFile, fileDimensions,
    readMatrix,
    fscanfVector, fprintfVector, freadVector, fwriteVector,
    -- * Experimental
    build', konst',
    -- * Deprecated
    (.*),(*/),(<|>),(<->),
    vectorMax,vectorMin,
    vectorMaxIndex, vectorMinIndex
) where

import Data.Packed
import Data.Packed.Internal(constantD)
import Numeric.ContainerBoot
import Numeric.Chain
import Numeric.IO
import Data.Complex
import Numeric.LinearAlgebra.Algorithms(Field,linearSolveSVD)
import Data.Packed.Random

------------------------------------------------------------------

{- | creates a vector with a given number of equal components:

@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD-- about 2x faster

{- | Creates a real vector containing a range of values:

@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@

Logarithmic spacing can be defined as follows:

@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Container Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
    where s = (b-a)/fromIntegral (n-1)

-- | Dot product: @u \<.\> v = dot u v@
(<.>) :: Product t => Vector t -> Vector t -> t
infixl 7 <.>
(<.>) = dot



--------------------------------------------------------

class Mul a b c | a b -> c where
 infixl 7 <>
 -- | Matrix-matrix, matrix-vector, and vector-matrix products.
 (<>)  :: Product t => a t -> b t -> c t

instance Mul Matrix Matrix Matrix where
    (<>) = mXm

instance Mul Matrix Vector Vector where
    (<>) m v = flatten $ m <> (asColumn v)

instance Mul Vector Matrix Vector where
    (<>) v m = flatten $ (asRow v) <> m

--------------------------------------------------------

-- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD).
(<\>) :: (Field a) => Matrix a -> Vector a -> Vector a
infixl 7 <\>
m <\> v = flatten (linearSolveSVD m (reshape 1 v))

--------------------------------------------------------