1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Container
-- Copyright : (c) Alberto Ruiz 2010-14
-- License : GPL
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines.
--
-- The 'Container' class is used to define optimized generic functions which work
-- on 'Vector' and 'Matrix' with real or complex elements.
--
-- Some of these functions are also available in the instances of the standard
-- numeric Haskell classes provided by "Numeric.LinearAlgebra".
--
-----------------------------------------------------------------------------
{-# OPTIONS_HADDOCK hide #-}
module Numeric.Container (
-- * Basic functions
module Data.Packed,
konst, build,
constant, linspace,
diag, ident,
ctrans,
-- * Generic operations
Container(..),
-- * Matrix product
Product(..),
Contraction(..),
optimiseMult,
mXm,mXv,vXm,LSDiv(..), cdot, (·), dot, (<.>),
outer, kronecker,
-- * Random numbers
RandDist(..),
randomVector,
gaussianSample,
uniformSample,
meanCov,
-- * Element conversion
Convert(..),
Complexable(),
RealElement(),
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
module Data.Complex,
-- * IO
dispf, disps, dispcf, vecdisp, latexFormat, format,
loadMatrix, saveMatrix, fromFile, fileDimensions,
readMatrix,
fscanfVector, fprintfVector, freadVector, fwriteVector,
) where
import Data.Packed
import Data.Packed.Internal(constantD)
import Numeric.ContainerBoot
import Numeric.Chain
import Numeric.IO
import Data.Complex
import Numeric.LinearAlgebra.Algorithms(Field,linearSolveSVD)
import Data.Packed.Random
------------------------------------------------------------------
{- | creates a vector with a given number of equal components:
@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD-- about 2x faster
{- | Creates a real vector containing a range of values:
>>> linspace 5 (-3,7)
fromList [-3.0,-0.5,2.0,4.5,7.0]@
Logarithmic spacing can be defined as follows:
@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Container Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
where s = (b-a)/fromIntegral (n-1)
-- | dot product: @cdot u v = 'udot' ('conj' u) v@
cdot :: (Container Vector t, Product t) => Vector t -> Vector t -> t
cdot u v = udot (conj u) v
--------------------------------------------------------
class Contraction a b c | a b -> c, a c -> b, b c -> a
where
infixl 7 <>
{- | Matrix-matrix product, matrix-vector product, and unconjugated dot product
>>> let a = (3><4) [1..] :: Matrix Double
>>> a
(3><4)
[ 1.0, 2.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
matrix × matrix:
>>> disp 2 (a <> trans a)
3x3
30 70 110
70 174 278
110 278 446
matrix × vector:
>>> a <> fromList [1,0,2,-1::Double]
fromList [3.0,11.0,19.0]
vector × matrix:
>>> fromList [1,2,3::Double] <> a
fromList [38.0,44.0,50.0,56.0]
unconjugated dot product:
>>> fromList [1,i] <> fromList[2*i+1,3]
1.0 :+ 5.0
-}
(<>) :: a -> b -> c
instance Product t => Contraction (Vector t) (Vector t) t where
(<>) = udot
instance Product t => Contraction (Matrix t) (Vector t) (Vector t) where
(<>) = mXv
instance Product t => Contraction (Vector t) (Matrix t) (Vector t) where
(<>) = vXm
instance Product t => Contraction (Matrix t) (Matrix t) (Matrix t) where
(<>) = mXm
--------------------------------------------------------
class LSDiv b c | b -> c, c->b where
infixl 7 <\>
-- | least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD)
(<\>) :: Field t => Matrix t -> b t -> c t
instance LSDiv Vector Vector where
m <\> v = flatten (linearSolveSVD m (reshape 1 v))
instance LSDiv Matrix Matrix where
(<\>) = linearSolveSVD
--------------------------------------------------------
{- | Dot product : @u · v = 'cdot' u v@
(unicode 0x00b7, Alt-Gr .)
>>> fromList [1,i] · fromList[2*i+1,3]
1.0 :+ (-1.0)
-}
(·) :: (Container Vector t, Product t) => Vector t -> Vector t -> t
infixl 7 ·
u · v = cdot u v
--------------------------------------------------------------------------------
-- bidirectional type inference
class Konst e d c | d -> c, c -> d
where
-- |
-- >>> konst 7 3 :: Vector Float
-- fromList [7.0,7.0,7.0]
--
-- >>> konst i (3::Int,4::Int)
-- (3><4)
-- [ 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0
-- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0
-- , 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0, 0.0 :+ 1.0 ]
--
konst :: e -> d -> c e
instance Container Vector e => Konst e Int Vector
where
konst = konst'
instance Container Vector e => Konst e (Int,Int) Matrix
where
konst = konst'
--------------------------------------------------------------------------------
class Build d f c e | d -> c, c -> d, f -> e, f -> d, f -> c, c e -> f, d e -> f
where
-- |
-- >>> build 5 (**2) :: Vector Double
-- fromList [0.0,1.0,4.0,9.0,16.0]
--
-- Hilbert matrix of order N:
--
-- >>> let hilb n = build (n,n) (\i j -> 1/(i+j+1)) :: Matrix Double
-- >>> putStr . dispf 2 $ hilb 3
-- 3x3
-- 1.00 0.50 0.33
-- 0.50 0.33 0.25
-- 0.33 0.25 0.20
--
build :: d -> f -> c e
instance Container Vector e => Build Int (e -> e) Vector e
where
build = build'
instance Container Matrix e => Build (Int,Int) (e -> e -> e) Matrix e
where
build = build'
--------------------------------------------------------------------------------
-- | Compute mean vector and covariance matrix of the rows of a matrix.
meanCov :: Matrix Double -> (Vector Double, Matrix Double)
meanCov x = (med,cov) where
r = rows x
k = 1 / fromIntegral r
med = konst k r `vXm` x
meds = konst 1 r `outer` med
xc = x `sub` meds
cov = scale (recip (fromIntegral (r-1))) (trans xc `mXm` xc)
--------------------------------------------------------------------------------
{-# DEPRECATED dot "use udot" #-}
dot :: Product e => Vector e -> Vector e -> e
dot = udot
{-# DEPRECATED (<.>) "use udot or (<>)" #-}
infixl 7 <.>
(<.>) :: Product e => Vector e -> Vector e -> e
(<.>) = udot
|