1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.ContainerBoot
-- Copyright : (c) Alberto Ruiz 2010
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Module to avoid cyclyc dependencies.
--
-----------------------------------------------------------------------------
module Numeric.ContainerBoot (
-- * Basic functions
ident, diag, ctrans,
-- * Generic operations
Container(..),
-- * Matrix product and related functions
Product(..),
mXm,mXv,vXm,
outer, kronecker,
-- * Element conversion
Convert(..),
Complexable(),
RealElement(),
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
module Data.Complex,
-- * Experimental
build', konst'
) where
import Data.Packed
import Data.Packed.ST as ST
import Numeric.Conversion
import Data.Packed.Internal
import Numeric.GSL.Vector
import Data.Complex
import Control.Monad(ap)
import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)
-------------------------------------------------------------------
type family IndexOf (c :: * -> *)
type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)
type family ArgOf (c :: * -> *) a
type instance ArgOf Vector a = a -> a
type instance ArgOf Matrix a = a -> a -> a
-------------------------------------------------------------------
-- | Basic element-by-element functions for numeric containers
class (Complexable c, Fractional e, Element e) => Container c e where
-- | create a structure with a single element
scalar :: e -> c e
-- | complex conjugate
conj :: c e -> c e
scale :: e -> c e -> c e
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
-- | element by element division
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
--
-- element by element inverse tangent
arctan2 :: c e -> c e -> c e
--
-- | cannot implement instance Functor because of Element class constraint
cmap :: (Element b) => (e -> b) -> c e -> c b
-- | constant structure of given size
konst :: e -> IndexOf c -> c e
-- | create a structure using a function
--
-- Hilbert matrix of order N:
--
-- @hilb n = build (n,n) (\\i j -> 1/(i+j+1))@
build :: IndexOf c -> (ArgOf c e) -> c e
--build :: BoundsOf f -> f -> (ContainerOf f) e
--
-- | indexing function
atIndex :: c e -> IndexOf c -> e
-- | index of min element
minIndex :: c e -> IndexOf c
-- | index of max element
maxIndex :: c e -> IndexOf c
-- | value of min element
minElement :: c e -> e
-- | value of max element
maxElement :: c e -> e
-- the C functions sumX/prodX are twice as fast as using foldVector
-- | the sum of elements (faster than using @fold@)
sumElements :: c e -> e
-- | the product of elements (faster than using @fold@)
prodElements :: c e -> e
-- | A more efficient implementation of @cmap (\\x -> if x>0 then 1 else 0)@
--
-- @> step $ linspace 5 (-1,1::Double)
-- 5 |> [0.0,0.0,0.0,1.0,1.0]@
step :: RealElement e => c e -> c e
-- | Element by element version of @case compare a b of {LT -> l; EQ -> e; GT -> g}@.
--
-- Arguments with any dimension = 1 are automatically expanded:
--
-- @> cond ((1>\<4)[1..]) ((3>\<1)[1..]) 0 100 ((3>\<4)[1..]) :: Matrix Double
-- (3><4)
-- [ 100.0, 2.0, 3.0, 4.0
-- , 0.0, 100.0, 7.0, 8.0
-- , 0.0, 0.0, 100.0, 12.0 ]@
cond :: RealElement e
=> c e -- ^ a
-> c e -- ^ b
-> c e -- ^ l
-> c e -- ^ e
-> c e -- ^ g
-> c e -- ^ result
-- | Find index of elements which satisfy a predicate
--
-- @> find (>0) (ident 3 :: Matrix Double)
-- [(0,0),(1,1),(2,2)]@
find :: (e -> Bool) -> c e -> [IndexOf c]
-- | Create a structure from an association list
--
-- @> assoc 5 0 [(2,7),(1,3)] :: Vector Double
-- 5 |> [0.0,3.0,7.0,0.0,0.0]@
assoc :: IndexOf c -- ^ size
-> e -- ^ default value
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
-- | Modify a structure using an update function
--
-- @> accum (ident 5) (+) [((1,1),5),((0,3),3)] :: Matrix Double
-- (5><5)
-- [ 1.0, 0.0, 0.0, 3.0, 0.0
-- , 0.0, 6.0, 0.0, 0.0, 0.0
-- , 0.0, 0.0, 1.0, 0.0, 0.0
-- , 0.0, 0.0, 0.0, 1.0, 0.0
-- , 0.0, 0.0, 0.0, 0.0, 1.0 ]@
accum :: c e -- ^ initial structure
-> (e -> e -> e) -- ^ update function
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
--------------------------------------------------------------------------
instance Container Vector Float where
scale = vectorMapValF Scale
scaleRecip = vectorMapValF Recip
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
divide = vectorZipF Div
equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
arctan2 = vectorZipF ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = id
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarF MinIdx
maxIndex = round . toScalarF MaxIdx
minElement = toScalarF Min
maxElement = toScalarF Max
sumElements = sumF
prodElements = prodF
step = stepF
find = findV
assoc = assocV
accum = accumV
cond = condV condF
instance Container Vector Double where
scale = vectorMapValR Scale
scaleRecip = vectorMapValR Recip
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
divide = vectorZipR Div
equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
arctan2 = vectorZipR ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = id
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarR MinIdx
maxIndex = round . toScalarR MaxIdx
minElement = toScalarR Min
maxElement = toScalarR Max
sumElements = sumR
prodElements = prodR
step = stepD
find = findV
assoc = assocV
accum = accumV
cond = condV condD
instance Container Vector (Complex Double) where
scale = vectorMapValC Scale
scaleRecip = vectorMapValC Recip
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
divide = vectorZipC Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2 = vectorZipC ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = conjugateC
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumC
prodElements = prodC
step = undefined -- cannot match
find = findV
assoc = assocV
accum = accumV
cond = undefined -- cannot match
instance Container Vector (Complex Float) where
scale = vectorMapValQ Scale
scaleRecip = vectorMapValQ Recip
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
divide = vectorZipQ Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
arctan2 = vectorZipQ ATan2
scalar x = fromList [x]
konst = constantD
build = buildV
conj = conjugateQ
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumQ
prodElements = prodQ
step = undefined -- cannot match
find = findV
assoc = assocV
accum = accumV
cond = undefined -- cannot match
---------------------------------------------------------------
instance (Container Vector a) => Container Matrix a where
scale x = liftMatrix (scale x)
scaleRecip x = liftMatrix (scaleRecip x)
addConstant x = liftMatrix (addConstant x)
add = liftMatrix2 add
sub = liftMatrix2 sub
mul = liftMatrix2 mul
divide = liftMatrix2 divide
equal a b = cols a == cols b && flatten a `equal` flatten b
arctan2 = liftMatrix2 arctan2
scalar x = (1><1) [x]
konst v (r,c) = reshape c (konst v (r*c))
build = buildM
conj = liftMatrix conj
cmap f = liftMatrix (mapVector f)
atIndex = (@@>)
minIndex m = let (r,c) = (rows m,cols m)
i = (minIndex $ flatten m)
in (i `div` c,i `mod` c)
maxIndex m = let (r,c) = (rows m,cols m)
i = (maxIndex $ flatten m)
in (i `div` c,i `mod` c)
minElement = ap (@@>) minIndex
maxElement = ap (@@>) maxIndex
sumElements = sumElements . flatten
prodElements = prodElements . flatten
step = liftMatrix step
find = findM
assoc = assocM
accum = accumM
cond = condM
----------------------------------------------------
-- | Matrix product and related functions
class Element e => Product e where
-- | matrix product
multiply :: Matrix e -> Matrix e -> Matrix e
-- | (unconjugated) dot product
udot :: Vector e -> Vector e -> e
-- | sum of absolute value of elements (differs in complex case from @norm1@)
absSum :: Vector e -> RealOf e
-- | sum of absolute value of elements
norm1 :: Vector e -> RealOf e
-- | euclidean norm
norm2 :: Vector e -> RealOf e
-- | element of maximum magnitude
normInf :: Vector e -> RealOf e
instance Product Float where
norm2 = toScalarF Norm2
absSum = toScalarF AbsSum
udot = dotF
norm1 = toScalarF AbsSum
normInf = maxElement . vectorMapF Abs
multiply = multiplyF
instance Product Double where
norm2 = toScalarR Norm2
absSum = toScalarR AbsSum
udot = dotR
norm1 = toScalarR AbsSum
normInf = maxElement . vectorMapR Abs
multiply = multiplyR
instance Product (Complex Float) where
norm2 = toScalarQ Norm2
absSum = toScalarQ AbsSum
udot = dotQ
norm1 = sumElements . fst . fromComplex . vectorMapQ Abs
normInf = maxElement . fst . fromComplex . vectorMapQ Abs
multiply = multiplyQ
instance Product (Complex Double) where
norm2 = toScalarC Norm2
absSum = toScalarC AbsSum
udot = dotC
norm1 = sumElements . fst . fromComplex . vectorMapC Abs
normInf = maxElement . fst . fromComplex . vectorMapC Abs
multiply = multiplyC
----------------------------------------------------------
-- synonym for matrix product
mXm :: Product t => Matrix t -> Matrix t -> Matrix t
mXm = multiply
-- matrix - vector product
mXv :: Product t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- vector - matrix product
vXm :: Product t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
{- | Outer product of two vectors.
@\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3]
(3><3)
[ 5.0, 2.0, 3.0
, 10.0, 4.0, 6.0
, 15.0, 6.0, 9.0 ]@
-}
outer :: (Product t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v
{- | Kronecker product of two matrices.
@m1=(2><3)
[ 1.0, 2.0, 0.0
, 0.0, -1.0, 3.0 ]
m2=(4><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0 ]@
@\> kronecker m1 m2
(8><9)
[ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0
, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0
, 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0
, 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0
, 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0
, 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0
, 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@
-}
kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
. splitEvery (cols a)
. map (reshape (cols b))
. toRows
$ flatten a `outer` flatten b
-------------------------------------------------------------------
class Convert t where
real :: Container c t => c (RealOf t) -> c t
complex :: Container c t => c t -> c (ComplexOf t)
single :: Container c t => c t -> c (SingleOf t)
double :: Container c t => c t -> c (DoubleOf t)
toComplex :: (Container c t, RealElement t) => (c t, c t) -> c (Complex t)
fromComplex :: (Container c t, RealElement t) => c (Complex t) -> (c t, c t)
instance Convert Double where
real = id
complex = comp'
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert Float where
real = id
complex = comp'
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Double) where
real = comp'
complex = id
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Float) where
real = comp'
complex = id
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
-------------------------------------------------------------------
type family RealOf x
type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double
type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float
type family ComplexOf x
type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double
type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float
type family SingleOf x
type instance SingleOf Double = Float
type instance SingleOf Float = Float
type instance SingleOf (Complex a) = Complex (SingleOf a)
type family DoubleOf x
type instance DoubleOf Double = Double
type instance DoubleOf Float = Double
type instance DoubleOf (Complex a) = Complex (DoubleOf a)
type family ElementOf c
type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a
------------------------------------------------------------
class Build f where
build' :: BoundsOf f -> f -> ContainerOf f
#if MIN_VERSION_base(4,7,0)
-- ghc >= 7.7 considers:
--
-- > a -> a
-- > b -> b -> b
--
-- to overlap
type family BoundsOf x where
BoundsOf (a -> a) = Int
BoundsOf (a->a->a) = (Int,Int)
type family ContainerOf x where
ContainerOf (a->a) = Vector a
ContainerOf (a->a->a) = Matrix a
#else
type family BoundsOf x
type family ContainerOf x
type instance BoundsOf (a->a) = Int
type instance BoundsOf (a->a->a) = (Int,Int)
type instance ContainerOf (a->a) = Vector a
type instance ContainerOf (a->a->a) = Matrix a
#endif
instance (Element a, Num a) => Build (a->a) where
build' = buildV
instance (Element a,
#if MIN_VERSION_base(4,7,0)
BoundsOf (a -> a -> a) ~ (Int,Int),
ContainerOf (a -> a -> a) ~ Matrix a,
#endif
Num a)
=> Build (a->a->a) where
build' = buildM
buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ]
where rs = map fromIntegral [0 .. (rc-1)]
cs = map fromIntegral [0 .. (cc-1)]
buildV n f = fromList [f k | k <- ks]
where ks = map fromIntegral [0 .. (n-1)]
----------------------------------------------------
-- experimental
class Konst s where
konst' :: Element e => e -> s -> ContainerOf' s e
type family ContainerOf' x y
type instance ContainerOf' Int a = Vector a
type instance ContainerOf' (Int,Int) a = Matrix a
instance Konst Int where
konst' = constantD
instance Konst (Int,Int) where
konst' k (r,c) = reshape c $ konst' k (r*c)
--------------------------------------------------------
-- | conjugate transpose
ctrans :: (Container Vector e, Element e) => Matrix e -> Matrix e
ctrans = liftMatrix conj . trans
-- | Creates a square matrix with a given diagonal.
diag :: (Num a, Element a) => Vector a -> Matrix a
diag v = diagRect 0 v n n where n = dim v
-- | creates the identity matrix of given dimension
ident :: (Num a, Element a) => Int -> Matrix a
ident n = diag (constantD 1 n)
--------------------------------------------------------
findV p x = foldVectorWithIndex g [] x where
g k z l = if p z then k:l else l
findM p x = map ((`divMod` cols x)) $ findV p (flatten x)
assocV n z xs = ST.runSTVector $ do
v <- ST.newVector z n
mapM_ (\(k,x) -> ST.writeVector v k x) xs
return v
assocM (r,c) z xs = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs
return m
accumV v0 f xs = ST.runSTVector $ do
v <- ST.thawVector v0
mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs
return v
accumM m0 f xs = ST.runSTMatrix $ do
m <- ST.thawMatrix m0
mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs
return m
----------------------------------------------------------------------
condM a b l e t = reshape (cols a'') $ cond a' b' l' e' t'
where
args@(a'':_) = conformMs [a,b,l,e,t]
[a', b', l', e', t'] = map flatten args
condV f a b l e t = f a' b' l' e' t'
where
[a', b', l', e', t'] = conformVs [a,b,l,e,t]
|