1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.GSL.Matrix
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable (uses FFI)
--
-- A few linear algebra computations based on GSL.
--
-----------------------------------------------------------------------------
-- #hide
module Numeric.GSL.Matrix(
eigSg, eigHg,
svdg,
qr, qrPacked, unpackQR,
cholR, cholC,
luSolveR, luSolveC,
luR, luC
) where
import Data.Packed.Internal
import Data.Packed.Matrix(ident)
import Numeric.GSL.Vector
import Foreign
import Complex
{- | eigendecomposition of a real symmetric matrix using /gsl_eigen_symmv/.
> > let (l,v) = eigS $ 'fromLists' [[1,2],[2,1]]
> > l
> 3.000 -1.000
>
> > v
> 0.707 -0.707
> 0.707 0.707
>
> > v <> diag l <> trans v
> 1.000 2.000
> 2.000 1.000
-}
eigSg :: Matrix Double -> (Vector Double, Matrix Double)
eigSg = eigSg' . cmat
eigSg' m
| r == 1 = (fromList [cdat m `at` 0], singleton 1)
| otherwise = unsafePerformIO $ do
l <- createVector r
v <- createMatrix RowMajor r r
app3 c_eigS mat m vec l mat v "eigSg"
return (l,v)
where r = rows m
foreign import ccall "gsl-aux.h eigensystemR" c_eigS :: TMVM
------------------------------------------------------------------
{- | eigendecomposition of a complex hermitian matrix using /gsl_eigen_hermv/
> > let (l,v) = eigH $ 'fromLists' [[1,2+i],[2-i,3]]
>
> > l
> 4.449 -0.449
>
> > v
> -0.544 0.839
> (-0.751,0.375) (-0.487,0.243)
>
> > v <> diag l <> (conjTrans) v
> 1.000 (2.000,1.000)
> (2.000,-1.000) 3.000
-}
eigHg :: Matrix (Complex Double)-> (Vector Double, Matrix (Complex Double))
eigHg = eigHg' . cmat
eigHg' m
| r == 1 = (fromList [realPart $ cdat m `at` 0], singleton 1)
| otherwise = unsafePerformIO $ do
l <- createVector r
v <- createMatrix RowMajor r r
app3 c_eigH mat m vec l mat v "eigHg"
return (l,v)
where r = rows m
foreign import ccall "gsl-aux.h eigensystemC" c_eigH :: TCMVCM
{- | Singular value decomposition of a real matrix, using /gsl_linalg_SV_decomp_mod/:
-}
svdg :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double)
svdg x = if rows x >= cols x
then svd' (cmat x)
else (v, s, u) where (u,s,v) = svd' (cmat (trans x))
svd' x = unsafePerformIO $ do
u <- createMatrix RowMajor r c
s <- createVector c
v <- createMatrix RowMajor c c
app4 c_svd mat x mat u vec s mat v "svdg"
return (u,s,v)
where r = rows x
c = cols x
foreign import ccall "gsl-aux.h svd" c_svd :: TMMVM
{- | QR decomposition of a real matrix using /gsl_linalg_QR_decomp/ and /gsl_linalg_QR_unpack/.
-}
qr :: Matrix Double -> (Matrix Double, Matrix Double)
qr = qr' . cmat
qr' x = unsafePerformIO $ do
q <- createMatrix RowMajor r r
rot <- createMatrix RowMajor r c
app3 c_qr mat x mat q mat rot "qr"
return (q,rot)
where r = rows x
c = cols x
foreign import ccall "gsl-aux.h QR" c_qr :: TMMM
qrPacked :: Matrix Double -> (Matrix Double, Vector Double)
qrPacked = qrPacked' . cmat
qrPacked' x = unsafePerformIO $ do
qrp <- createMatrix RowMajor r c
tau <- createVector (min r c)
app3 c_qrPacked mat x mat qrp vec tau "qrUnpacked"
return (qrp,tau)
where r = rows x
c = cols x
foreign import ccall "gsl-aux.h QRpacked" c_qrPacked :: TMMV
unpackQR :: (Matrix Double, Vector Double) -> (Matrix Double, Matrix Double)
unpackQR (qrp,tau) = unpackQR' (cmat qrp, tau)
unpackQR' (qrp,tau) = unsafePerformIO $ do
q <- createMatrix RowMajor r r
res <- createMatrix RowMajor r c
app4 c_qrUnpack mat qrp vec tau mat q mat res "qrUnpack"
return (q,res)
where r = rows qrp
c = cols qrp
foreign import ccall "gsl-aux.h QRunpack" c_qrUnpack :: TMVMM
{- | Cholesky decomposition of a symmetric positive definite real matrix using /gsl_linalg_cholesky_decomp/.
@\> chol $ (2><2) [1,2,
2,9::Double]
(2><2)
[ 1.0, 0.0
, 2.0, 2.23606797749979 ]@
-}
cholR :: Matrix Double -> Matrix Double
cholR = cholR' . cmat
cholR' x = unsafePerformIO $ do
r <- createMatrix RowMajor n n
app2 c_cholR mat x mat r "cholR"
return r
where n = rows x
foreign import ccall "gsl-aux.h cholR" c_cholR :: TMM
cholC :: Matrix (Complex Double) -> Matrix (Complex Double)
cholC = cholC' . cmat
cholC' x = unsafePerformIO $ do
r <- createMatrix RowMajor n n
app2 c_cholC mat x mat r "cholC"
return r
where n = rows x
foreign import ccall "gsl-aux.h cholC" c_cholC :: TCMCM
--------------------------------------------------------
{- -| efficient multiplication by the inverse of a matrix (for real matrices)
-}
luSolveR :: Matrix Double -> Matrix Double -> Matrix Double
luSolveR a b = luSolveR' (cmat a) (cmat b)
luSolveR' a b
| n1==n2 && n1==r = unsafePerformIO $ do
s <- createMatrix RowMajor r c
app3 c_luSolveR mat a mat b mat s "luSolveR"
return s
| otherwise = error "luSolveR of nonsquare matrix"
where n1 = rows a
n2 = cols a
r = rows b
c = cols b
foreign import ccall "gsl-aux.h luSolveR" c_luSolveR :: TMMM
{- -| efficient multiplication by the inverse of a matrix (for complex matrices).
-}
luSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
luSolveC a b = luSolveC' (cmat a) (cmat b)
luSolveC' a b
| n1==n2 && n1==r = unsafePerformIO $ do
s <- createMatrix RowMajor r c
app3 c_luSolveC mat a mat b mat s "luSolveC"
return s
| otherwise = error "luSolveC of nonsquare matrix"
where n1 = rows a
n2 = cols a
r = rows b
c = cols b
foreign import ccall "gsl-aux.h luSolveC" c_luSolveC :: TCMCMCM
{- | lu decomposition of real matrix (packed as a vector including l, u, the permutation and sign)
-}
luRaux :: Matrix Double -> Vector Double
luRaux = luRaux' . cmat
luRaux' x = unsafePerformIO $ do
res <- createVector (r*r+r+1)
app2 c_luRaux mat x vec res "luRaux"
return res
where r = rows x
foreign import ccall "gsl-aux.h luRaux" c_luRaux :: TMV
{- | lu decomposition of complex matrix (packed as a vector including l, u, the permutation and sign)
-}
luCaux :: Matrix (Complex Double) -> Vector (Complex Double)
luCaux = luCaux' . cmat
luCaux' x = unsafePerformIO $ do
res <- createVector (r*r+r+1)
app2 c_luCaux mat x vec res "luCaux"
return res
where r = rows x
foreign import ccall "gsl-aux.h luCaux" c_luCaux :: TCMCV
{- | The LU decomposition of a square matrix. Is based on /gsl_linalg_LU_decomp/ and /gsl_linalg_complex_LU_decomp/ as described in <http://www.gnu.org/software/Numeric.GSL/manual/Numeric.GSL-ref_13.html#SEC223>.
@\> let m = 'fromLists' [[1,2,-3],[2+3*i,-7,0],[1,-i,2*i]]
\> let (l,u,p,s) = luR m@
L is the lower triangular:
@\> l
1. 0. 0.
0.154-0.231i 1. 0.
0.154-0.231i 0.624-0.522i 1.@
U is the upper triangular:
@\> u
2.+3.i -7. 0.
0. 3.077-1.615i -3.
0. 0. 1.873+0.433i@
p is a permutation:
@\> p
[1,0,2]@
L \* U obtains a permuted version of the original matrix:
@\> extractRows p m
2.+3.i -7. 0.
1. 2. -3.
1. -1.i 2.i
\ -- CPP
\> l \<\> u
2.+3.i -7. 0.
1. 2. -3.
1. -1.i 2.i@
s is the sign of the permutation, required to obtain sign of the determinant:
@\> s * product ('toList' $ 'takeDiag' u)
(-18.0) :+ (-16.000000000000004)
\> 'LinearAlgebra.Algorithms.det' m
(-18.0) :+ (-16.000000000000004)@
-}
luR :: Matrix Double -> (Matrix Double, Matrix Double, [Int], Double)
luR m = (l,u,p, fromIntegral s') where
r = rows m
v = luRaux m
lu = reshape r $ subVector 0 (r*r) v
s':p = map round . toList . subVector (r*r) (r+1) $ v
u = triang r r 0 1`mul` lu
l = (triang r r 0 0 `mul` lu) `add` ident r
add = liftMatrix2 $ vectorZipR Add
mul = liftMatrix2 $ vectorZipR Mul
-- | Complex version of 'luR'.
luC :: Matrix (Complex Double) -> (Matrix (Complex Double), Matrix (Complex Double), [Int], Complex Double)
luC m = (l,u,p, fromIntegral s') where
r = rows m
v = luCaux m
lu = reshape r $ subVector 0 (r*r) v
s':p = map (round.realPart) . toList . subVector (r*r) (r+1) $ v
u = triang r r 0 1 `mul` lu
l = (triang r r 0 0 `mul` lu) `add` liftMatrix comp (ident r)
add = liftMatrix2 $ vectorZipC Add
mul = liftMatrix2 $ vectorZipC Mul
{- auxiliary function to get triangular matrices
-}
triang r c h v = reshape c $ fromList [el i j | i<-[0..r-1], j<-[0..c-1]]
where el i j = if j-i>=h then v else 1 - v
|