1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.GSL.Polynomials
Copyright : (c) Alberto Ruiz 2006
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : uses ffi
Polynomials.
<http://www.gnu.org/software/gsl/manual/html_node/General-Polynomial-Equations.html#General-Polynomial-Equations>
-}
-----------------------------------------------------------------------------
module Numeric.GSL.Polynomials (
polySolve
) where
import Data.Packed.Internal
import Complex
import Foreign
{- | Solution of general polynomial equations, using /gsl_poly_complex_solve/. For example,
the three solutions of x^3 + 8 = 0
@\> polySolve [8,0,0,1]
[(-1.9999999999999998) :+ 0.0,
1.0 :+ 1.732050807568877,
1.0 :+ (-1.732050807568877)]@
The example in the GSL manual: To find the roots of x^5 -1 = 0:
@\> polySolve [-1, 0, 0, 0, 0, 1]
[(-0.8090169943749475) :+ 0.5877852522924731,
(-0.8090169943749475) :+ (-0.5877852522924731),
0.30901699437494734 :+ 0.9510565162951536,
0.30901699437494734 :+ (-0.9510565162951536),
1.0 :+ 0.0]@
-}
polySolve :: [Double] -> [Complex Double]
polySolve = toList . polySolve' . fromList
polySolve' :: Vector Double -> Vector (Complex Double)
polySolve' v | dim v > 1 = unsafePerformIO $ do
r <- createVector (dim v-1)
ww2 withVector v withVector r $ \ v r ->
c_polySolve // v // r // check "polySolve"
return r
| otherwise = error "polySolve on a polynomial of degree zero"
foreign import ccall "gsl-aux.h polySolve" c_polySolve:: TVCV
|