summaryrefslogtreecommitdiff
path: root/lib/Numeric/GSL/Root.hs
blob: 41288467f5cab07b1fdb9947b970175b551c2e04 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
{- |
Module      :  Numeric.GSL.Root
Copyright   :  (c) Alberto Ruiz 2009
License     :  GPL

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional
Portability :  uses ffi

Multidimensional root finding.

<http://www.gnu.org/software/gsl/manual/html_node/Multidimensional-Root_002dFinding.html>

The example in the GSL manual:

@import Numeric.GSL
import Numeric.LinearAlgebra(format)
import Text.Printf(printf)

rosenbrock a b [x,y] = [ a*(1-x), b*(y-x^2) ]

disp = putStrLn . format \"  \" (printf \"%.3f\")

main = do
    let (sol,path) = root Hybrids 1E-7 30 (rosenbrock 1 10) [-10,-5]
    print sol
    disp path

\> main
[1.0,1.0]
 0.000  -10.000  -5.000  11.000  -1050.000
 1.000   -3.976  24.827   4.976     90.203
 2.000   -3.976  24.827   4.976     90.203
 3.000   -3.976  24.827   4.976     90.203
 4.000   -1.274  -5.680   2.274    -73.018
 5.000   -1.274  -5.680   2.274    -73.018
 6.000    0.249   0.298   0.751      2.359
 7.000    0.249   0.298   0.751      2.359
 8.000    1.000   0.878  -0.000     -1.218
 9.000    1.000   0.989  -0.000     -0.108
10.000    1.000   1.000   0.000      0.000
@

-}
-----------------------------------------------------------------------------

module Numeric.GSL.Root (
    root, RootMethod(..),
    rootJ, RootMethodJ(..),
) where

import Data.Packed.Internal
import Data.Packed.Matrix
import Numeric.GSL.Internal
import Foreign.Ptr(FunPtr, freeHaskellFunPtr)
import Foreign.C.Types
import System.IO.Unsafe(unsafePerformIO)

-------------------------------------------------------------------------

data RootMethod = Hybrids
                | Hybrid
                | DNewton
                | Broyden
                deriving (Enum,Eq,Show,Bounded)

-- | Nonlinear multidimensional root finding using algorithms that do not require 
-- any derivative information to be supplied by the user.
-- Any derivatives needed are approximated by finite differences.
root :: RootMethod
     -> Double                     -- ^ maximum residual
     -> Int                        -- ^ maximum number of iterations allowed
     -> ([Double] -> [Double])     -- ^ function to minimize
     -> [Double]                   -- ^ starting point
     -> ([Double], Matrix Double)  -- ^ solution vector and optimization path

root method epsabs maxit fun xinit = rootGen (fi (fromEnum method)) fun xinit epsabs maxit

rootGen m f xi epsabs maxit = unsafePerformIO $ do
    let xiv = fromList xi
        n   = dim xiv
    fp <- mkVecVecfun (aux_vTov (checkdim1 n . fromList . f . toList))
    rawpath <- vec xiv $ \xiv' ->
                   createMIO maxit (2*n+1)
                         (c_root m fp epsabs (fi maxit) // xiv')
                         "root"
    let it = round (rawpath @@> (maxit-1,0))
        path = takeRows it rawpath
        [sol] = toLists $ dropRows (it-1) path
    freeHaskellFunPtr fp
    return (take n $ drop 1 sol, path)


foreign import ccall unsafe "root"
    c_root:: CInt -> FunPtr TVV -> Double -> CInt -> TVM

-------------------------------------------------------------------------

data RootMethodJ = HybridsJ
                 | HybridJ
                 | Newton
                 | GNewton
                deriving (Enum,Eq,Show,Bounded)

-- | Nonlinear multidimensional root finding using both the function and its derivatives.
rootJ :: RootMethodJ
      -> Double                     -- ^ maximum residual
      -> Int                        -- ^ maximum number of iterations allowed
      -> ([Double] -> [Double])     -- ^ function to minimize
      -> ([Double] -> [[Double]])   -- ^ Jacobian
      -> [Double]                   -- ^ starting point
      -> ([Double], Matrix Double)  -- ^ solution vector and optimization path

rootJ method epsabs maxit fun jac xinit = rootJGen (fi (fromEnum method)) fun jac xinit epsabs maxit

rootJGen m f jac xi epsabs maxit = unsafePerformIO $ do
    let xiv = fromList xi
        n   = dim xiv
    fp <- mkVecVecfun (aux_vTov (checkdim1 n . fromList . f . toList))
    jp <- mkVecMatfun (aux_vTom (checkdim2 n . fromLists . jac . toList))
    rawpath <- vec xiv $ \xiv' ->
                   createMIO maxit (2*n+1)
                         (c_rootj m fp jp epsabs (fi maxit) // xiv')
                         "root"
    let it = round (rawpath @@> (maxit-1,0))
        path = takeRows it rawpath
        [sol] = toLists $ dropRows (it-1) path
    freeHaskellFunPtr fp
    freeHaskellFunPtr jp
    return (take n $ drop 1 sol, path)


foreign import ccall unsafe "rootj"
    c_rootj:: CInt -> FunPtr TVV -> FunPtr TVM -> Double -> CInt -> TVM

-------------------------------------------------------

checkdim1 n v
    | dim v == n = v
    | otherwise = error $ "Error: "++ show n
                        ++ " components expected in the result of the function supplied to root"

checkdim2 n m
    | rows m == n && cols m == n = m
    | otherwise = error $ "Error: "++ show n ++ "x" ++ show n
                        ++ " Jacobian expected in rootJ"