1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
#include "gsl-aux.h"
#include <gsl/gsl_blas.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_deriv.h>
#include <gsl/gsl_poly.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <string.h>
#include <stdio.h>
#define MACRO(B) do {B} while (0)
#define ERROR(CODE) MACRO(return CODE;)
#define REQUIRES(COND, CODE) MACRO(if(!(COND)) {ERROR(CODE);})
#define OK return 0;
#define MIN(A,B) ((A)<(B)?(A):(B))
#define MAX(A,B) ((A)>(B)?(A):(B))
#ifdef DBG
#define DEBUGMSG(M) printf("*** calling aux C function: %s\n",M);
#else
#define DEBUGMSG(M)
#endif
#define CHECK(RES,CODE) MACRO(if(RES) return CODE;)
#ifdef DBG
#define DEBUGMAT(MSG,X) printf(MSG" = \n"); gsl_matrix_fprintf(stdout,X,"%f"); printf("\n");
#else
#define DEBUGMAT(MSG,X)
#endif
#ifdef DBG
#define DEBUGVEC(MSG,X) printf(MSG" = \n"); gsl_vector_fprintf(stdout,X,"%f"); printf("\n");
#else
#define DEBUGVEC(MSG,X)
#endif
#define DVVIEW(A) gsl_vector_view A = gsl_vector_view_array(A##p,A##n)
#define DMVIEW(A) gsl_matrix_view A = gsl_matrix_view_array(A##p,A##r,A##c)
#define CVVIEW(A) gsl_vector_complex_view A = gsl_vector_complex_view_array((double*)A##p,A##n)
#define CMVIEW(A) gsl_matrix_complex_view A = gsl_matrix_complex_view_array((double*)A##p,A##r,A##c)
#define KDVVIEW(A) gsl_vector_const_view A = gsl_vector_const_view_array(A##p,A##n)
#define KDMVIEW(A) gsl_matrix_const_view A = gsl_matrix_const_view_array(A##p,A##r,A##c)
#define KCVVIEW(A) gsl_vector_complex_const_view A = gsl_vector_complex_const_view_array((double*)A##p,A##n)
#define KCMVIEW(A) gsl_matrix_complex_const_view A = gsl_matrix_complex_const_view_array((double*)A##p,A##r,A##c)
#define V(a) (&a.vector)
#define M(a) (&a.matrix)
#define GCVEC(A) int A##n, gsl_complex*A##p
#define KGCVEC(A) int A##n, const gsl_complex*A##p
#define BAD_SIZE 2000
#define BAD_CODE 2001
#define MEM 2002
#define BAD_FILE 2003
void no_abort_on_error() {
gsl_set_error_handler_off();
}
int toScalarR(int code, KRVEC(x), RVEC(r)) {
REQUIRES(rn==1,BAD_SIZE);
DEBUGMSG("toScalarR");
KDVVIEW(x);
double res;
switch(code) {
case 0: { res = gsl_blas_dnrm2(V(x)); break; }
case 1: { res = gsl_blas_dasum(V(x)); break; }
case 2: { res = gsl_vector_max_index(V(x)); break; }
case 3: { res = gsl_vector_max(V(x)); break; }
case 4: { res = gsl_vector_min_index(V(x)); break; }
case 5: { res = gsl_vector_min(V(x)); break; }
default: ERROR(BAD_CODE);
}
rp[0] = res;
OK
}
inline double sign(double x) {
if(x>0) {
return +1.0;
} else if (x<0) {
return -1.0;
} else {
return 0.0;
}
}
#define OP(C,F) case C: { for(k=0;k<xn;k++) rp[k] = F(xp[k]); OK }
#define OPV(C,E) case C: { for(k=0;k<xn;k++) rp[k] = E; OK }
int mapR(int code, KRVEC(x), RVEC(r)) {
int k;
REQUIRES(xn == rn,BAD_SIZE);
DEBUGMSG("mapR");
switch (code) {
OP(0,sin)
OP(1,cos)
OP(2,tan)
OP(3,fabs)
OP(4,asin)
OP(5,acos)
OP(6,atan) /* atan2 mediante vectorZip */
OP(7,sinh)
OP(8,cosh)
OP(9,tanh)
OP(10,gsl_asinh)
OP(11,gsl_acosh)
OP(12,gsl_atanh)
OP(13,exp)
OP(14,log)
OP(15,sign)
OP(16,sqrt)
default: ERROR(BAD_CODE);
}
}
int mapCAux(int code, KGCVEC(x), GCVEC(r)) {
int k;
REQUIRES(xn == rn,BAD_SIZE);
DEBUGMSG("mapC");
switch (code) {
OP(0,gsl_complex_sin)
OP(1,gsl_complex_cos)
OP(2,gsl_complex_tan)
OP(4,gsl_complex_arcsin)
OP(5,gsl_complex_arccos)
OP(6,gsl_complex_arctan)
OP(7,gsl_complex_sinh)
OP(8,gsl_complex_cosh)
OP(9,gsl_complex_tanh)
OP(10,gsl_complex_arcsinh)
OP(11,gsl_complex_arccosh)
OP(12,gsl_complex_arctanh)
OP(13,gsl_complex_exp)
OP(14,gsl_complex_log)
OP(16,gsl_complex_sqrt)
// gsl_complex_arg
// gsl_complex_abs
default: ERROR(BAD_CODE);
}
}
int mapC(int code, KCVEC(x), CVEC(r)) {
return mapCAux(code, xn, (gsl_complex*)xp, rn, (gsl_complex*)rp);
}
int mapValR(int code, double* pval, KRVEC(x), RVEC(r)) {
int k;
double val = *pval;
REQUIRES(xn == rn,BAD_SIZE);
DEBUGMSG("mapValR");
switch (code) {
OPV(0,val*xp[k])
OPV(1,val/xp[k])
OPV(2,val+xp[k])
OPV(3,val-xp[k])
OPV(4,pow(val,xp[k]))
OPV(5,pow(xp[k],val))
default: ERROR(BAD_CODE);
}
}
int mapValCAux(int code, gsl_complex* pval, KGCVEC(x), GCVEC(r)) {
int k;
gsl_complex val = *pval;
REQUIRES(xn == rn,BAD_SIZE);
DEBUGMSG("mapValC");
switch (code) {
OPV(0,gsl_complex_mul(val,xp[k]))
OPV(1,gsl_complex_div(val,xp[k]))
OPV(2,gsl_complex_add(val,xp[k]))
OPV(3,gsl_complex_sub(val,xp[k]))
OPV(4,gsl_complex_pow(val,xp[k]))
OPV(5,gsl_complex_pow(xp[k],val))
default: ERROR(BAD_CODE);
}
}
int mapValC(int code, gsl_complex* val, KCVEC(x), CVEC(r)) {
return mapValCAux(code, val, xn, (gsl_complex*)xp, rn, (gsl_complex*)rp);
}
#define OPZE(C,msg,E) case C: {DEBUGMSG(msg) for(k=0;k<an;k++) rp[k] = E(ap[k],bp[k]); OK }
#define OPZV(C,msg,E) case C: {DEBUGMSG(msg) res = E(V(r),V(b)); CHECK(res,res); OK }
int zipR(int code, KRVEC(a), KRVEC(b), RVEC(r)) {
REQUIRES(an == bn && an == rn, BAD_SIZE);
int k;
switch(code) {
OPZE(4,"zipR Pow",pow)
OPZE(5,"zipR ATan2",atan2)
}
KDVVIEW(a);
KDVVIEW(b);
DVVIEW(r);
gsl_vector_memcpy(V(r),V(a));
int res;
switch(code) {
OPZV(0,"zipR Add",gsl_vector_add)
OPZV(1,"zipR Sub",gsl_vector_sub)
OPZV(2,"zipR Mul",gsl_vector_mul)
OPZV(3,"zipR Div",gsl_vector_div)
default: ERROR(BAD_CODE);
}
}
int zipCAux(int code, KGCVEC(a), KGCVEC(b), GCVEC(r)) {
REQUIRES(an == bn && an == rn, BAD_SIZE);
int k;
switch(code) {
OPZE(0,"zipC Add",gsl_complex_add)
OPZE(1,"zipC Sub",gsl_complex_sub)
OPZE(2,"zipC Mul",gsl_complex_mul)
OPZE(3,"zipC Div",gsl_complex_div)
OPZE(4,"zipC Pow",gsl_complex_pow)
//OPZE(5,"zipR ATan2",atan2)
}
//KCVVIEW(a);
//KCVVIEW(b);
//CVVIEW(r);
//gsl_vector_memcpy(V(r),V(a));
//int res;
switch(code) {
default: ERROR(BAD_CODE);
}
}
int zipC(int code, KCVEC(a), KCVEC(b), CVEC(r)) {
return zipCAux(code, an, (gsl_complex*)ap, bn, (gsl_complex*)bp, rn, (gsl_complex*)rp);
}
int fft(int code, KCVEC(X), CVEC(R)) {
REQUIRES(Xn == Rn,BAD_SIZE);
DEBUGMSG("fft");
int s = Xn;
gsl_fft_complex_wavetable * wavetable = gsl_fft_complex_wavetable_alloc (s);
gsl_fft_complex_workspace * workspace = gsl_fft_complex_workspace_alloc (s);
gsl_vector_const_view X = gsl_vector_const_view_array((double*)Xp, 2*Xn);
gsl_vector_view R = gsl_vector_view_array((double*)Rp, 2*Rn);
gsl_blas_dcopy(&X.vector,&R.vector);
if(code==0) {
gsl_fft_complex_forward ((double*)Rp, 1, s, wavetable, workspace);
} else {
gsl_fft_complex_inverse ((double*)Rp, 1, s, wavetable, workspace);
}
gsl_fft_complex_wavetable_free (wavetable);
gsl_fft_complex_workspace_free (workspace);
OK
}
int integrate_qng(double f(double, void*), double a, double b, double prec,
double *result, double*error) {
DEBUGMSG("integrate_qng");
gsl_function F;
F.function = f;
F.params = NULL;
size_t neval;
int res = gsl_integration_qng (&F, a,b, 0, prec, result, error, &neval);
CHECK(res,res);
OK
}
int integrate_qags(double f(double,void*), double a, double b, double prec, int w,
double *result, double* error) {
DEBUGMSG("integrate_qags");
gsl_integration_workspace * wk = gsl_integration_workspace_alloc (w);
gsl_function F;
F.function = f;
F.params = NULL;
int res = gsl_integration_qags (&F, a,b, 0, prec, w,wk, result, error);
CHECK(res,res);
gsl_integration_workspace_free (wk);
OK
}
int polySolve(KRVEC(a), CVEC(z)) {
DEBUGMSG("polySolve");
REQUIRES(an>1,BAD_SIZE);
gsl_poly_complex_workspace * w = gsl_poly_complex_workspace_alloc (an);
int res = gsl_poly_complex_solve ((double*)ap, an, w, (double*)zp);
CHECK(res,res);
gsl_poly_complex_workspace_free (w);
OK;
}
int matrix_fscanf(char*filename, RMAT(a)) {
DEBUGMSG("gsl_matrix_fscanf");
//printf(filename); printf("\n");
DMVIEW(a);
FILE * f = fopen(filename,"r");
CHECK(!f,BAD_FILE);
int res = gsl_matrix_fscanf(f, M(a));
CHECK(res,res);
fclose (f);
OK
}
//---------------------------------------------------------------
typedef double Trawfun(int, double*);
double only_f_aux_min(const gsl_vector*x, void *pars) {
Trawfun * f = (Trawfun*) pars;
double* p = (double*)calloc(x->size,sizeof(double));
int k;
for(k=0;k<x->size;k++) {
p[k] = gsl_vector_get(x,k);
}
double res = f(x->size,p);
free(p);
return res;
}
// this version returns info about intermediate steps
int minimize(double f(int, double*), double tolsize, int maxit,
KRVEC(xi), KRVEC(sz), RMAT(sol)) {
REQUIRES(xin==szn && solr == maxit && solc == 3+xin,BAD_SIZE);
DEBUGMSG("minimizeList (nmsimplex)");
gsl_multimin_function my_func;
// extract function from pars
my_func.f = only_f_aux_min;
my_func.n = xin;
my_func.params = f;
size_t iter = 0;
int status;
double size;
const gsl_multimin_fminimizer_type *T;
gsl_multimin_fminimizer *s = NULL;
// Initial vertex size vector
KDVVIEW(sz);
// Starting point
KDVVIEW(xi);
// Minimizer nmsimplex, without derivatives
T = gsl_multimin_fminimizer_nmsimplex;
s = gsl_multimin_fminimizer_alloc (T, my_func.n);
gsl_multimin_fminimizer_set (s, &my_func, V(xi), V(sz));
do {
status = gsl_multimin_fminimizer_iterate (s);
size = gsl_multimin_fminimizer_size (s);
solp[iter*solc+0] = iter;
solp[iter*solc+1] = s->fval;
solp[iter*solc+2] = size;
int k;
for(k=0;k<xin;k++) {
solp[iter*solc+k+3] = gsl_vector_get(s->x,k);
}
status = gsl_multimin_test_size (size, tolsize);
iter++;
} while (status == GSL_CONTINUE && iter < maxit);
int i,j;
for (i=iter; i<solr; i++) {
solp[i*solc+0] = iter;
for(j=1;j<solc;j++) {
solp[i*solc+j]=0.;
}
}
gsl_multimin_fminimizer_free(s);
OK
}
// working with the gradient
typedef struct {double (*f)(int, double*); void (*df)(int, double*, double*);} Tfdf;
double f_aux_min(const gsl_vector*x, void *pars) {
Tfdf * fdf = ((Tfdf*) pars);
double* p = (double*)calloc(x->size,sizeof(double));
int k;
for(k=0;k<x->size;k++) {
p[k] = gsl_vector_get(x,k);
}
double res = fdf->f(x->size,p);
free(p);
return res;
}
void df_aux_min(const gsl_vector * x, void * pars, gsl_vector * g) {
Tfdf * fdf = ((Tfdf*) pars);
double* p = (double*)calloc(x->size,sizeof(double));
double* q = (double*)calloc(x->size,sizeof(double));
int k;
for(k=0;k<x->size;k++) {
p[k] = gsl_vector_get(x,k);
}
fdf->df(x->size,p,q);
for(k=0;k<x->size;k++) {
gsl_vector_set(g,k,q[k]);
}
free(p);
free(q);
}
void fdf_aux_min(const gsl_vector * x, void * pars, double * f, gsl_vector * g) {
*f = f_aux_min(x,pars);
df_aux_min(x,pars,g);
}
// conjugate gradient
int minimizeWithDeriv(double f(int, double*), void df(int, double*, double*),
double initstep, double minimpar, double tolgrad, int maxit,
KRVEC(xi), RMAT(sol)) {
REQUIRES(solr == maxit && solc == 2+xin,BAD_SIZE);
DEBUGMSG("minimizeWithDeriv (conjugate_fr)");
gsl_multimin_function_fdf my_func;
// extract function from pars
my_func.f = f_aux_min;
my_func.df = df_aux_min;
my_func.fdf = fdf_aux_min;
my_func.n = xin;
Tfdf stfdf;
stfdf.f = f;
stfdf.df = df;
my_func.params = &stfdf;
size_t iter = 0;
int status;
const gsl_multimin_fdfminimizer_type *T;
gsl_multimin_fdfminimizer *s = NULL;
// Starting point
KDVVIEW(xi);
// conjugate gradient fr
T = gsl_multimin_fdfminimizer_conjugate_fr;
s = gsl_multimin_fdfminimizer_alloc (T, my_func.n);
gsl_multimin_fdfminimizer_set (s, &my_func, V(xi), initstep, minimpar);
do {
status = gsl_multimin_fdfminimizer_iterate (s);
solp[iter*solc+0] = iter;
solp[iter*solc+1] = s->f;
int k;
for(k=0;k<xin;k++) {
solp[iter*solc+k+2] = gsl_vector_get(s->x,k);
}
status = gsl_multimin_test_gradient (s->gradient, tolgrad);
iter++;
} while (status == GSL_CONTINUE && iter < maxit);
int i,j;
for (i=iter; i<solr; i++) {
solp[i*solc+0] = iter;
for(j=1;j<solc;j++) {
solp[i*solc+j]=0.;
}
}
gsl_multimin_fdfminimizer_free(s);
OK
}
int deriv(int code, double f(double, void*), double x, double h, double * result, double * abserr)
{
gsl_function F;
F.function = f;
F.params = 0;
if(code==0) return gsl_deriv_central (&F, x, h, result, abserr);
if(code==1) return gsl_deriv_forward (&F, x, h, result, abserr);
if(code==2) return gsl_deriv_backward (&F, x, h, result, abserr);
return 0;
}
|