1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
{-# OPTIONS_GHC -fglasgow-exts #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Algorithms
Copyright : (c) Alberto Ruiz 2006-7
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : uses ffi
A generic interface for a number of essential functions. Using it some higher level algorithms
and testing properties can be written for both real and complex matrices.
In any case, the specific functions for particular base types can also be explicitly
imported from the LAPACK and GSL.Matrix modules.
-}
-----------------------------------------------------------------------------
module Numeric.LinearAlgebra.Algorithms (
-- * Linear Systems
linearSolve,
inv, pinv,
pinvTol, det,
-- * Matrix factorizations
-- ** Singular value decomposition
svd,
full, economy,
-- ** Eigensystems
eig, eigSH,
-- ** Other
Numeric.LinearAlgebra.Algorithms.qr, chol,
-- * Nullspace
nullspacePrec,
nullVector,
-- * Misc
eps, i,
ctrans,
Normed(..), NormType(..),
GenMat(linearSolveSVD,lu,eigSH'), unpackQR
) where
import Data.Packed.Internal hiding (fromComplex, toComplex, comp, conj)
import Data.Packed
import qualified Numeric.GSL.Matrix as GSL
import Numeric.GSL.Vector
import Numeric.LinearAlgebra.LAPACK as LAPACK
import Complex
import Numeric.LinearAlgebra.Linear
import Data.List(foldl1')
-- | Auxiliary typeclass used to define generic computations for both real and complex matrices.
class (Linear Matrix t) => GenMat t where
svd :: Matrix t -> (Matrix t, Vector Double, Matrix t)
lu :: Matrix t -> (Matrix t, Matrix t, [Int], t)
linearSolve :: Matrix t -> Matrix t -> Matrix t
linearSolveSVD :: Matrix t -> Matrix t -> Matrix t
eig :: Matrix t -> (Vector (Complex Double), Matrix (Complex Double))
eigSH' :: Matrix t -> (Vector Double, Matrix t)
cholSH :: Matrix t -> Matrix t
qr :: Matrix t -> (Matrix t, Matrix t)
-- | conjugate transpose
ctrans :: Matrix t -> Matrix t
instance GenMat Double where
svd = svdR
lu = GSL.luR
linearSolve = linearSolveR
linearSolveSVD = linearSolveSVDR Nothing
ctrans = trans
eig = eigR
eigSH' = eigS
cholSH = cholS
qr = GSL.unpackQR . qrR
instance GenMat (Complex Double) where
svd = svdC
lu = GSL.luC
linearSolve = linearSolveC
linearSolveSVD = linearSolveSVDC Nothing
ctrans = conjTrans
eig = eigC
eigSH' = eigH
cholSH = cholH
qr = unpackQR . qrC
-- | eigensystem of complex hermitian or real symmetric matrix
eigSH :: GenMat t => Matrix t -> (Vector Double, Matrix t)
eigSH m | m `equal` ctrans m = eigSH' m
| otherwise = error "eigSH requires complex hermitian or real symmetric matrix"
-- | Cholesky factorization of a positive definite hermitian or symmetric matrix
chol :: GenMat t => Matrix t -> Matrix t
chol m | m `equal` ctrans m = cholSH m
| otherwise = error "chol requires positive definite complex hermitian or real symmetric matrix"
square m = rows m == cols m
det :: GenMat t => Matrix t -> t
det m | square m = s * (product $ toList $ takeDiag $ u)
| otherwise = error "det of nonsquare matrix"
where (_,u,_,s) = lu m
inv :: GenMat t => Matrix t -> Matrix t
inv m | square m = m `linearSolve` ident (rows m)
| otherwise = error "inv of nonsquare matrix"
pinv :: GenMat t => Matrix t -> Matrix t
pinv m = linearSolveSVD m (ident (rows m))
full :: Field t
=> (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Matrix Double, Matrix t)
full svd m = (u, d ,v) where
(u,s,v) = svd m
d = diagRect s r c
r = rows m
c = cols m
economy :: Field t
=> (Matrix t -> (Matrix t, Vector Double, Matrix t)) -> Matrix t -> (Matrix t, Vector Double, Matrix t)
economy svd m = (u', subVector 0 d s, v') where
(u,s,v) = svd m
sl@(g:_) = toList (complex s)
s' = fromList . filter rec $ sl
rec x = magnitude x > magnitude g*tol
t = 1
tol = (fromIntegral (max (rows m) (cols m)) * magnitude g * t * eps)
r = rows m
c = cols m
d = dim s'
u' = takeColumns d u
v' = takeColumns d v
-- | The machine precision of a Double: @eps == 2.22044604925031e-16@ (the value used by GNU-Octave).
eps :: Double
eps = 2.22044604925031e-16
-- | The imaginary unit: @i == 0.0 :+ 1.0@
i :: Complex Double
i = 0:+1
-- | matrix product
mXm :: (Num t, GenMat t) => Matrix t -> Matrix t -> Matrix t
mXm = multiply
-- | matrix - vector product
mXv :: (Num t, GenMat t) => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- | vector - matrix product
vXm :: (Num t, GenMat t) => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
---------------------------------------------------------------------------
norm2 :: Vector Double -> Double
norm2 = toScalarR Norm2
norm1 :: Vector Double -> Double
norm1 = toScalarR AbsSum
data NormType = Infinity | PNorm1 | PNorm2 -- PNorm Int
pnormRV PNorm2 = norm2
pnormRV PNorm1 = norm1
pnormRV Infinity = vectorMax . vectorMapR Abs
--pnormRV _ = error "pnormRV not yet defined"
pnormCV PNorm2 = norm2 . asReal
pnormCV PNorm1 = norm1 . liftVector magnitude
pnormCV Infinity = vectorMax . liftVector magnitude
--pnormCV _ = error "pnormCV not yet defined"
pnormRM PNorm2 m = head (toList s) where (_,s,_) = svdR m
pnormRM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (vectorMapR Abs) m
pnormRM Infinity m = vectorMax $ liftMatrix (vectorMapR Abs) m `mXv` constant 1 (cols m)
--pnormRM _ _ = error "p norm not yet defined"
pnormCM PNorm2 m = head (toList s) where (_,s,_) = svdC m
pnormCM PNorm1 m = vectorMax $ constant 1 (rows m) `vXm` liftMatrix (liftVector magnitude) m
pnormCM Infinity m = vectorMax $ liftMatrix (liftVector magnitude) m `mXv` constant 1 (cols m)
--pnormCM _ _ = error "p norm not yet defined"
-- -- | computes the p-norm of a matrix or vector (with the same definitions as GNU-octave). pnorm 0 denotes \\inf-norm. See also 'norm'.
--pnorm :: (Container t, GenMat a) => Int -> t a -> Double
--pnorm = pnormG
class Normed t where
pnorm :: NormType -> t -> Double
norm :: t -> Double
norm = pnorm PNorm2
instance Normed (Vector Double) where
pnorm = pnormRV
instance Normed (Vector (Complex Double)) where
pnorm = pnormCV
instance Normed (Matrix Double) where
pnorm = pnormRM
instance Normed (Matrix (Complex Double)) where
pnorm = pnormCM
-----------------------------------------------------------------------
-- | The nullspace of a matrix from its SVD decomposition.
nullspacePrec :: GenMat t
=> Double -- ^ relative tolerance in 'eps' units
-> Matrix t -- ^ input matrix
-> [Vector t] -- ^ list of unitary vectors spanning the nullspace
nullspacePrec t m = ns where
(_,s,v) = svd m
sl@(g:_) = toList s
tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps)
rank = length (filter (> g*tol) sl)
-- ns = drop rank (toColumns v)
ns = drop rank $ toRows $ ctrans v
-- | The nullspace of a matrix, assumed to be one-dimensional, with default tolerance (shortcut for @last . nullspacePrec 1@).
nullVector :: GenMat t => Matrix t -> Vector t
nullVector = last . nullspacePrec 1
------------------------------------------------------------------------
{- Pseudoinverse of a real matrix with the desired tolerance, expressed as a
multiplicative factor of the default tolerance used by GNU-Octave (see 'pinv').
@\> let m = 'fromLists' [[1,0, 0]
,[0,1, 0]
,[0,0,1e-10]]
\
\> 'pinv' m
1. 0. 0.
0. 1. 0.
0. 0. 10000000000.
\
\> pinvTol 1E8 m
1. 0. 0.
0. 1. 0.
0. 0. 1.@
-}
--pinvTol :: Double -> Matrix Double -> Matrix Double
pinvTol t m = v' `mXm` diag s' `mXm` trans u' where
(u,s,v) = svdR m
sl@(g:_) = toList s
s' = fromList . map rec $ sl
rec x = if x < g*tol then 1 else 1/x
tol = (fromIntegral (max (rows m) (cols m)) * g * t * eps)
r = rows m
c = cols m
d = dim s
u' = takeColumns d u
v' = takeColumns d v
---------------------------------------------------------------------
-- many thanks, quickcheck!
haussholder tau v = ident (dim v) `sub` (tau `scale` (w `mXm` ctrans w))
where w = asColumn v
unpackQR (pq, tau) = (q,r)
where cs = toColumns pq
m = rows pq
n = cols pq
mn = min m n
r = fromColumns $ zipWith zt ([m-1, m-2 .. 1] ++ repeat 0) cs
vs = zipWith zh [1..mn] cs
hs = zipWith haussholder (toList tau) vs
q = foldl1' mXm hs
zh k v = fromList $ replicate (k-1) 0 ++ (1:drop k xs)
where xs = toList v
zt 0 v = v
zt k v = join [subVector 0 (dim v - k) v, constant 0 k]
|