summaryrefslogtreecommitdiff
path: root/lib/Numeric/LinearAlgebra/Linear.hs
blob: e817642a2f405869b0ccd4f78b7776f2f98a5926 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
{-# LANGUAGE UndecidableInstances, MultiParamTypeClasses, FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
{- |
Module      :  Numeric.LinearAlgebra.Linear
Copyright   :  (c) Alberto Ruiz 2006-7
License     :  GPL-style

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional
Portability :  uses ffi

Basic optimized operations on vectors and matrices.

-}
-----------------------------------------------------------------------------

module Numeric.LinearAlgebra.Linear (
    Vectors(..),                                    
    Linear(..)
) where

import Data.Packed.Vector
import Data.Packed.Matrix
import Data.Complex
import Numeric.GSL.Vector

import Control.Monad(ap)

-- | basic Vector functions
class Num e => Vectors a e where
    vectorSum :: a e -> e
    euclidean :: a e -> e
    absSum    :: a e -> e
    vectorMin :: a e -> e
    vectorMax :: a e -> e
    vectorMinIndex :: a e -> Int
    vectorMaxIndex :: a e -> Int
    dot       :: a e -> a e -> e

instance Vectors Vector Float where
    vectorSum = sumF
    euclidean = toScalarF Norm2
    absSum    = toScalarF AbsSum
    vectorMin = toScalarF Min
    vectorMax = toScalarF Max
    vectorMinIndex = round . toScalarF MinIdx
    vectorMaxIndex = round . toScalarF MaxIdx
    dot       = dotF

instance Vectors Vector Double where
    vectorSum = sumR
    euclidean = toScalarR Norm2
    absSum    = toScalarR AbsSum
    vectorMin = toScalarR Min
    vectorMax = toScalarR Max
    vectorMinIndex = round . toScalarR MinIdx
    vectorMaxIndex = round . toScalarR MaxIdx
    dot       = dotR

instance Vectors Vector (Complex Float) where
    vectorSum = sumQ
    euclidean = (:+ 0) . toScalarQ Norm2
    absSum    = (:+ 0) . toScalarQ AbsSum
    vectorMin = ap (@>) vectorMinIndex
    vectorMax = ap (@>) vectorMaxIndex
    vectorMinIndex = vectorMinIndex . fst . fromComplex . (zipVector (*) `ap` mapVector conjugate)
    vectorMaxIndex = vectorMaxIndex . fst . fromComplex . (zipVector (*) `ap` mapVector conjugate)
    dot       = dotQ

instance Vectors Vector (Complex Double) where
    vectorSum  = sumC
    euclidean = (:+ 0) . toScalarC Norm2
    absSum    = (:+ 0) . toScalarC AbsSum
    vectorMin = ap (@>) vectorMinIndex
    vectorMax = ap (@>) vectorMaxIndex
    vectorMinIndex = vectorMinIndex . fst . fromComplex . (zipVector (*) `ap` mapVector conjugate)
    vectorMaxIndex = vectorMaxIndex . fst . fromComplex . (zipVector (*) `ap` mapVector conjugate)
    dot       = dotC

----------------------------------------------------

-- | Basic element-by-element functions.
class (Container c e) => Linear c e where
    -- | create a structure with a single element
    scalar      :: e -> c e
    scale       :: e -> c e -> c e
    -- | scale the element by element reciprocal of the object:
    --
    -- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
    scaleRecip  :: e -> c e -> c e
    addConstant :: e -> c e -> c e
    add         :: c e -> c e -> c e
    sub         :: c e -> c e -> c e
    -- | element by element multiplication
    mul         :: c e -> c e -> c e
    -- | element by element division
    divide      :: c e -> c e -> c e
    equal       :: c e -> c e -> Bool


instance Linear Vector Float where
    scale = vectorMapValF Scale
    scaleRecip = vectorMapValF Recip
    addConstant = vectorMapValF AddConstant
    add = vectorZipF Add
    sub = vectorZipF Sub
    mul = vectorZipF Mul
    divide = vectorZipF Div
    equal u v = dim u == dim v && vectorMax (vectorMapF Abs (sub u v)) == 0.0
    scalar x = fromList [x]

instance Linear Vector Double where
    scale = vectorMapValR Scale
    scaleRecip = vectorMapValR Recip
    addConstant = vectorMapValR AddConstant
    add = vectorZipR Add
    sub = vectorZipR Sub
    mul = vectorZipR Mul
    divide = vectorZipR Div
    equal u v = dim u == dim v && vectorMax (vectorMapR Abs (sub u v)) == 0.0
    scalar x = fromList [x]

instance Linear Vector (Complex Double) where
    scale = vectorMapValC Scale
    scaleRecip = vectorMapValC Recip
    addConstant = vectorMapValC AddConstant
    add = vectorZipC Add
    sub = vectorZipC Sub
    mul = vectorZipC Mul
    divide = vectorZipC Div
    equal u v = dim u == dim v && vectorMax (mapVector magnitude (sub u v)) == 0.0
    scalar x = fromList [x]

instance (Linear Vector a, Container Matrix a) => (Linear Matrix a) where
    scale x = liftMatrix (scale x)
    scaleRecip x = liftMatrix (scaleRecip x)
    addConstant x = liftMatrix (addConstant x)
    add = liftMatrix2 add
    sub = liftMatrix2 sub
    mul = liftMatrix2 mul
    divide = liftMatrix2 divide
    equal a b = cols a == cols b && flatten a `equal` flatten b
    scalar x = (1><1) [x]