summaryrefslogtreecommitdiff
path: root/lib/Numeric/LinearAlgebra/Linear.hs
blob: 67921d8f18a9d175334ba4a09ebcfc2d98340258 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
{-# LANGUAGE UndecidableInstances, MultiParamTypeClasses, FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
{- |
Module      :  Numeric.LinearAlgebra.Linear
Copyright   :  (c) Alberto Ruiz 2006-7
License     :  GPL-style

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional
Portability :  uses ffi

Basic optimized operations on vectors and matrices.

-}
-----------------------------------------------------------------------------

module Numeric.LinearAlgebra.Linear (
    -- * Linear Algebra Typeclasses
    Vectors(..),
    Linear(..),
    -- * Products
    Prod(..),
    mXm,mXv,vXm,
    outer, kronecker,
    -- * Creation of numeric vectors
    constant, linspace
) where

import Data.Packed.Internal
import Data.Packed.Matrix
import Data.Complex
import Numeric.GSL.Vector
import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)

import Control.Monad(ap)

-- | basic Vector functions
class Num e => Vectors a e where
    -- the C functions sumX are twice as fast as using foldVector
    vectorSum :: a e -> e
    euclidean :: a e -> e
    absSum    :: a e -> e
    vectorMin :: a e -> e
    vectorMax :: a e -> e
    minIdx    :: a e -> Int
    maxIdx    :: a e -> Int
    dot       :: a e -> a e -> e

instance Vectors Vector Float where
    vectorSum = sumF
    euclidean = toScalarF Norm2
    absSum    = toScalarF AbsSum
    vectorMin = toScalarF Min
    vectorMax = toScalarF Max
    minIdx    = round . toScalarF MinIdx
    maxIdx    = round . toScalarF MaxIdx
    dot       = dotF

instance Vectors Vector Double where
    vectorSum = sumR
    euclidean = toScalarR Norm2
    absSum    = toScalarR AbsSum
    vectorMin = toScalarR Min
    vectorMax = toScalarR Max
    minIdx    = round . toScalarR MinIdx
    maxIdx    = round . toScalarR MaxIdx
    dot       = dotR

instance Vectors Vector (Complex Float) where
    vectorSum = sumQ
    euclidean = (:+ 0) . toScalarQ Norm2
    absSum    = (:+ 0) . toScalarQ AbsSum
    vectorMin = ap (@>) minIdx
    vectorMax = ap (@>) maxIdx
    minIdx    = minIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    maxIdx    = maxIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    dot       = dotQ

instance Vectors Vector (Complex Double) where
    vectorSum  = sumC
    euclidean = (:+ 0) . toScalarC Norm2
    absSum    = (:+ 0) . toScalarC AbsSum
    vectorMin = ap (@>) minIdx
    vectorMax = ap (@>) maxIdx
    minIdx    = minIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    maxIdx    = maxIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
    dot       = dotC

----------------------------------------------------

-- | Basic element-by-element functions.
class (Element e, Container c) => Linear c e where
    -- | create a structure with a single element
    scalar      :: e -> c e
    scale       :: e -> c e -> c e
    -- | scale the element by element reciprocal of the object:
    --
    -- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
    scaleRecip  :: e -> c e -> c e
    addConstant :: e -> c e -> c e
    add         :: c e -> c e -> c e
    sub         :: c e -> c e -> c e
    -- | element by element multiplication
    mul         :: c e -> c e -> c e
    -- | element by element division
    divide      :: c e -> c e -> c e
    equal       :: c e -> c e -> Bool


instance Linear Vector Float where
    scale = vectorMapValF Scale
    scaleRecip = vectorMapValF Recip
    addConstant = vectorMapValF AddConstant
    add = vectorZipF Add
    sub = vectorZipF Sub
    mul = vectorZipF Mul
    divide = vectorZipF Div
    equal u v = dim u == dim v && vectorMax (vectorMapF Abs (sub u v)) == 0.0
    scalar x = fromList [x]

instance Linear Vector Double where
    scale = vectorMapValR Scale
    scaleRecip = vectorMapValR Recip
    addConstant = vectorMapValR AddConstant
    add = vectorZipR Add
    sub = vectorZipR Sub
    mul = vectorZipR Mul
    divide = vectorZipR Div
    equal u v = dim u == dim v && vectorMax (vectorMapR Abs (sub u v)) == 0.0
    scalar x = fromList [x]

instance Linear Vector (Complex Double) where
    scale = vectorMapValC Scale
    scaleRecip = vectorMapValC Recip
    addConstant = vectorMapValC AddConstant
    add = vectorZipC Add
    sub = vectorZipC Sub
    mul = vectorZipC Mul
    divide = vectorZipC Div
    equal u v = dim u == dim v && vectorMax (mapVector magnitude (sub u v)) == 0.0
    scalar x = fromList [x]

instance Linear Vector (Complex Float) where
    scale = vectorMapValQ Scale
    scaleRecip = vectorMapValQ Recip
    addConstant = vectorMapValQ AddConstant
    add = vectorZipQ Add
    sub = vectorZipQ Sub
    mul = vectorZipQ Mul
    divide = vectorZipQ Div
    equal u v = dim u == dim v && vectorMax (mapVector magnitude (sub u v)) == 0.0
    scalar x = fromList [x]

instance (Linear Vector a, Container Matrix) => (Linear Matrix a) where
    scale x = liftMatrix (scale x)
    scaleRecip x = liftMatrix (scaleRecip x)
    addConstant x = liftMatrix (addConstant x)
    add = liftMatrix2 add
    sub = liftMatrix2 sub
    mul = liftMatrix2 mul
    divide = liftMatrix2 divide
    equal a b = cols a == cols b && flatten a `equal` flatten b
    scalar x = (1><1) [x]


----------------------------------------------------

{- | creates a vector with a given number of equal components:

@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD -- about 2x faster

{- | Creates a real vector containing a range of values:

@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@

Logarithmic spacing can be defined as follows:

@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Linear Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
    where s = (b-a)/fromIntegral (n-1)

----------------------------------------------------

class Element t => Prod t where
    multiply :: Matrix t -> Matrix t -> Matrix t
    ctrans :: Matrix t -> Matrix t

instance Prod Double where
    multiply = multiplyR
    ctrans = trans

instance Prod (Complex Double) where
    multiply = multiplyC
    ctrans = conj . trans

instance Prod Float where
    multiply = multiplyF
    ctrans = trans

instance Prod (Complex Float) where
    multiply = multiplyQ
    ctrans = conj . trans

----------------------------------------------------------

-- synonym for matrix product
mXm :: Prod t => Matrix t -> Matrix t -> Matrix t
mXm = multiply

-- matrix - vector product
mXv :: Prod t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)

-- vector - matrix product
vXm :: Prod t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m

{- | Outer product of two vectors.

@\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3]
(3><3)
 [  5.0, 2.0, 3.0
 , 10.0, 4.0, 6.0
 , 15.0, 6.0, 9.0 ]@
-}
outer :: (Prod t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v

{- | Kronecker product of two matrices.

@m1=(2><3)
 [ 1.0,  2.0, 0.0
 , 0.0, -1.0, 3.0 ]
m2=(4><3)
 [  1.0,  2.0,  3.0
 ,  4.0,  5.0,  6.0
 ,  7.0,  8.0,  9.0
 , 10.0, 11.0, 12.0 ]@

@\> kronecker m1 m2
(8><9)
 [  1.0,  2.0,  3.0,   2.0,   4.0,   6.0,  0.0,  0.0,  0.0
 ,  4.0,  5.0,  6.0,   8.0,  10.0,  12.0,  0.0,  0.0,  0.0
 ,  7.0,  8.0,  9.0,  14.0,  16.0,  18.0,  0.0,  0.0,  0.0
 , 10.0, 11.0, 12.0,  20.0,  22.0,  24.0,  0.0,  0.0,  0.0
 ,  0.0,  0.0,  0.0,  -1.0,  -2.0,  -3.0,  3.0,  6.0,  9.0
 ,  0.0,  0.0,  0.0,  -4.0,  -5.0,  -6.0, 12.0, 15.0, 18.0
 ,  0.0,  0.0,  0.0,  -7.0,  -8.0,  -9.0, 21.0, 24.0, 27.0
 ,  0.0,  0.0,  0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@
-}
kronecker :: (Prod t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
              . splitEvery (cols a)
              . map (reshape (cols b))
              . toRows
              $ flatten a `outer` flatten b