1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
{-# LANGUAGE UndecidableInstances, MultiParamTypeClasses, FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Linear
Copyright : (c) Alberto Ruiz 2006-7
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : uses ffi
Basic optimized operations on vectors and matrices.
-}
-----------------------------------------------------------------------------
module Numeric.LinearAlgebra.Linear (
-- * Linear Algebra Typeclasses
Vectors(..),
Linear(..),
-- * Products
Prod(..),
mXm,mXv,vXm,
outer, kronecker,
-- * Creation of numeric vectors
constant, linspace
) where
import Data.Packed.Internal
import Data.Packed.Matrix
import Data.Complex
import Numeric.GSL.Vector
import Numeric.LinearAlgebra.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ)
import Control.Monad(ap)
-- | basic Vector functions
class Num e => Vectors a e where
-- the C functions sumX are twice as fast as using foldVector
vectorSum :: a e -> e
euclidean :: a e -> e
absSum :: a e -> e
vectorMin :: a e -> e
vectorMax :: a e -> e
minIdx :: a e -> Int
maxIdx :: a e -> Int
dot :: a e -> a e -> e
instance Vectors Vector Float where
vectorSum = sumF
euclidean = toScalarF Norm2
absSum = toScalarF AbsSum
vectorMin = toScalarF Min
vectorMax = toScalarF Max
minIdx = round . toScalarF MinIdx
maxIdx = round . toScalarF MaxIdx
dot = dotF
instance Vectors Vector Double where
vectorSum = sumR
euclidean = toScalarR Norm2
absSum = toScalarR AbsSum
vectorMin = toScalarR Min
vectorMax = toScalarR Max
minIdx = round . toScalarR MinIdx
maxIdx = round . toScalarR MaxIdx
dot = dotR
instance Vectors Vector (Complex Float) where
vectorSum = sumQ
euclidean = (:+ 0) . toScalarQ Norm2
absSum = (:+ 0) . toScalarQ AbsSum
vectorMin = ap (@>) minIdx
vectorMax = ap (@>) maxIdx
minIdx = minIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIdx = maxIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
dot = dotQ
instance Vectors Vector (Complex Double) where
vectorSum = sumC
euclidean = (:+ 0) . toScalarC Norm2
absSum = (:+ 0) . toScalarC AbsSum
vectorMin = ap (@>) minIdx
vectorMax = ap (@>) maxIdx
minIdx = minIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIdx = maxIdx . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
dot = dotC
----------------------------------------------------
-- | Basic element-by-element functions.
class (Element e, Container c) => Linear c e where
-- | create a structure with a single element
scalar :: e -> c e
scale :: e -> c e -> c e
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
-- | element by element division
divide :: c e -> c e -> c e
equal :: c e -> c e -> Bool
instance Linear Vector Float where
scale = vectorMapValF Scale
scaleRecip = vectorMapValF Recip
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
divide = vectorZipF Div
equal u v = dim u == dim v && vectorMax (vectorMapF Abs (sub u v)) == 0.0
scalar x = fromList [x]
instance Linear Vector Double where
scale = vectorMapValR Scale
scaleRecip = vectorMapValR Recip
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
divide = vectorZipR Div
equal u v = dim u == dim v && vectorMax (vectorMapR Abs (sub u v)) == 0.0
scalar x = fromList [x]
instance Linear Vector (Complex Double) where
scale = vectorMapValC Scale
scaleRecip = vectorMapValC Recip
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
divide = vectorZipC Div
equal u v = dim u == dim v && vectorMax (mapVector magnitude (sub u v)) == 0.0
scalar x = fromList [x]
instance Linear Vector (Complex Float) where
scale = vectorMapValQ Scale
scaleRecip = vectorMapValQ Recip
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
divide = vectorZipQ Div
equal u v = dim u == dim v && vectorMax (mapVector magnitude (sub u v)) == 0.0
scalar x = fromList [x]
instance (Linear Vector a, Container Matrix) => (Linear Matrix a) where
scale x = liftMatrix (scale x)
scaleRecip x = liftMatrix (scaleRecip x)
addConstant x = liftMatrix (addConstant x)
add = liftMatrix2 add
sub = liftMatrix2 sub
mul = liftMatrix2 mul
divide = liftMatrix2 divide
equal a b = cols a == cols b && flatten a `equal` flatten b
scalar x = (1><1) [x]
----------------------------------------------------
{- | creates a vector with a given number of equal components:
@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD -- about 2x faster
{- | Creates a real vector containing a range of values:
@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@
Logarithmic spacing can be defined as follows:
@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Linear Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
where s = (b-a)/fromIntegral (n-1)
----------------------------------------------------
class Element t => Prod t where
multiply :: Matrix t -> Matrix t -> Matrix t
ctrans :: Matrix t -> Matrix t
instance Prod Double where
multiply = multiplyR
ctrans = trans
instance Prod (Complex Double) where
multiply = multiplyC
ctrans = conj . trans
instance Prod Float where
multiply = multiplyF
ctrans = trans
instance Prod (Complex Float) where
multiply = multiplyQ
ctrans = conj . trans
----------------------------------------------------------
-- synonym for matrix product
mXm :: Prod t => Matrix t -> Matrix t -> Matrix t
mXm = multiply
-- matrix - vector product
mXv :: Prod t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- vector - matrix product
vXm :: Prod t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
{- | Outer product of two vectors.
@\> 'fromList' [1,2,3] \`outer\` 'fromList' [5,2,3]
(3><3)
[ 5.0, 2.0, 3.0
, 10.0, 4.0, 6.0
, 15.0, 6.0, 9.0 ]@
-}
outer :: (Prod t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v
{- | Kronecker product of two matrices.
@m1=(2><3)
[ 1.0, 2.0, 0.0
, 0.0, -1.0, 3.0 ]
m2=(4><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0 ]@
@\> kronecker m1 m2
(8><9)
[ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0
, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0
, 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0
, 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0
, 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0
, 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0
, 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]@
-}
kronecker :: (Prod t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
. splitEvery (cols a)
. map (reshape (cols b))
. toRows
$ flatten a `outer` flatten b
|