summaryrefslogtreecommitdiff
path: root/lib/Numeric/LinearAlgebra/Tests/Instances.hs
blob: 21a6f8894151d990a785bfe2dbf30400e9ff0746 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{-# LANGUAGE FlexibleContexts, UndecidableInstances, CPP #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
-----------------------------------------------------------------------------
{- |
Module      :  Numeric.LinearAlgebra.Tests.Instances
Copyright   :  (c) Alberto Ruiz 2008
License     :  GPL-style

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional
Portability :  portable

Arbitrary instances for vectors, matrices.

-}

module Numeric.LinearAlgebra.Tests.Instances(
    Sq(..),     rSq,cSq,
    Rot(..),    rRot,cRot,
    Her(..),    rHer,cHer,
    WC(..),     rWC,cWC,
    SqWC(..),   rSqWC, cSqWC,
    PosDef(..), rPosDef, cPosDef,
    Consistent(..), rConsist, cConsist,
    RM,CM, rM,cM,
    FM,ZM, fM,zM
) where


import Numeric.LinearAlgebra
import Control.Monad(replicateM)
#include "quickCheckCompat.h"

#if MIN_VERSION_QuickCheck(2,0,0)
shrinkListElementwise :: (Arbitrary a) => [a] -> [[a]]
shrinkListElementwise []     = []
shrinkListElementwise (x:xs) = [ y:xs | y  <- shrink x                 ]
                            ++ [ x:ys | ys <- shrinkListElementwise xs ]

shrinkPair :: (Arbitrary a, Arbitrary b) => (a,b) -> [(a,b)]
shrinkPair (a,b) = [ (a,x) | x <- shrink b ] ++ [ (x,b) | x <- shrink a ]
#endif

#if MIN_VERSION_QuickCheck(2,1,1)
#else
instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
    arbitrary = do
        re <- arbitrary
        im <- arbitrary
        return (re :+ im)

#if MIN_VERSION_QuickCheck(2,0,0)
    shrink (re :+ im) = 
        [ u :+ v | (u,v) <- shrinkPair (re,im) ]
#else
    -- this has been moved to the 'Coarbitrary' class in QuickCheck 2
    coarbitrary = undefined 
#endif

#endif

chooseDim = sized $ \m -> choose (1,max 1 m)

instance (Field a, Arbitrary a) => Arbitrary (Vector a) where 
    arbitrary = do m <- chooseDim
                   l <- vector m
                   return $ fromList l

#if MIN_VERSION_QuickCheck(2,0,0)
    -- shrink any one of the components
    shrink = map fromList . shrinkListElementwise . toList

#else
    coarbitrary = undefined
#endif

instance (Element a, Arbitrary a) => Arbitrary (Matrix a) where 
    arbitrary = do
        m <- chooseDim
        n <- chooseDim
        l <- vector (m*n)
        return $ (m><n) l

#if MIN_VERSION_QuickCheck(2,0,0)
    -- shrink any one of the components
    shrink a = map ((rows a) >< (cols a))
               . shrinkListElementwise
               . concat . toLists 
                     $ a
#else
    coarbitrary = undefined
#endif


-- a square matrix
newtype (Sq a) = Sq (Matrix a) deriving Show
instance (Element a, Arbitrary a) => Arbitrary (Sq a) where
    arbitrary = do
        n <- chooseDim
        l <- vector (n*n)
        return $ Sq $ (n><n) l

#if MIN_VERSION_QuickCheck(2,0,0)
    shrink (Sq a) = [ Sq b | b <- shrink a ]
#else
    coarbitrary = undefined
#endif


-- a unitary matrix
newtype (Rot a) = Rot (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Rot a) where
    arbitrary = do
        Sq m <- arbitrary
        let (q,_) = qr m
        return (Rot q)

#if MIN_VERSION_QuickCheck(2,0,0)
#else
    coarbitrary = undefined
#endif


-- a complex hermitian or real symmetric matrix
newtype (Her a) = Her (Matrix a) deriving Show
instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Her a) where
    arbitrary = do
        Sq m <- arbitrary
        let m' = m/2
        return $ Her (m' + ctrans m')

#if MIN_VERSION_QuickCheck(2,0,0)
#else
    coarbitrary = undefined
#endif


-- a well-conditioned general matrix (the singular values are between 1 and 100)
newtype (WC a) = WC (Matrix a) deriving Show
instance (AutoReal a, Field a, Arbitrary a) => Arbitrary (WC a) where
    arbitrary = do
        m <- arbitrary
        let (u,_,v) = svd m
            r = rows m
            c = cols m
            n = min r c
        sv' <- replicateM n (choose (1,100))
        let s = diagRect (fromList sv') r c
        return $ WC (u <> real'' s <> trans v)

#if MIN_VERSION_QuickCheck(2,0,0)
#else
    coarbitrary = undefined
#endif


-- a well-conditioned square matrix (the singular values are between 1 and 100)
newtype (SqWC a) = SqWC (Matrix a) deriving Show
instance (AutoReal a, Field a, Arbitrary a) => Arbitrary (SqWC a) where
    arbitrary = do
        Sq m <- arbitrary
        let (u,_,v) = svd m
            n = rows m
        sv' <- replicateM n (choose (1,100))
        let s = diag (fromList sv')
        return $ SqWC (u <> real'' s <> trans v)

#if MIN_VERSION_QuickCheck(2,0,0)
#else
    coarbitrary = undefined
#endif


-- a positive definite square matrix (the eigenvalues are between 0 and 100)
newtype (PosDef a) = PosDef (Matrix a) deriving Show
instance (AutoReal a, Field a, Arbitrary a, Num (Vector a)) => Arbitrary (PosDef a) where
    arbitrary = do
        Her m <- arbitrary
        let (_,v) = eigSH m
            n = rows m
        l <- replicateM n (choose (0,100))
        let s = diag (fromList l)
            p = v <> real'' s <> ctrans v
        return $ PosDef (0.5 * p + 0.5 * ctrans p)

#if MIN_VERSION_QuickCheck(2,0,0)
#else
    coarbitrary = undefined
#endif


-- a pair of matrices that can be multiplied
newtype (Consistent a) = Consistent (Matrix a, Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Consistent a) where
    arbitrary = do
        n <- chooseDim
        k <- chooseDim
        m <- chooseDim
        la <- vector (n*k)
        lb <- vector (k*m)
        return $ Consistent ((n><k) la, (k><m) lb)

#if MIN_VERSION_QuickCheck(2,0,0)
    shrink (Consistent (x,y)) = [ Consistent (u,v) | (u,v) <- shrinkPair (x,y) ]
#else
    coarbitrary = undefined
#endif



type RM = Matrix Double
type CM = Matrix (Complex Double)
type FM = Matrix Float
type ZM = Matrix (Complex Float)


rM m = m :: RM
cM m = m :: CM
fM m = m :: FM
zM m = m :: ZM


rHer (Her m) = m :: RM
cHer (Her m) = m :: CM

rRot (Rot m) = m :: RM
cRot (Rot m) = m :: CM

rSq  (Sq m)  = m :: RM
cSq  (Sq m)  = m :: CM

rWC (WC m) = m :: RM
cWC (WC m) = m :: CM

rSqWC (SqWC m) = m :: RM
cSqWC (SqWC m) = m :: CM

rPosDef (PosDef m) = m :: RM
cPosDef (PosDef m) = m :: CM

rConsist (Consistent (a,b)) = (a,b::RM)
cConsist (Consistent (a,b)) = (a,b::CM)