1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
{-# OPTIONS #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests.Instances
Copyright : (c) Alberto Ruiz 2008
License : GPL-style
Maintainer : Alberto Ruiz (aruiz at um dot es)
Stability : provisional
Portability : portable
Arbitrary instances for vectors, matrices.
-}
module Numeric.LinearAlgebra.Tests.Instances(
Sq(..), rSq,cSq,
Rot(..), rRot,cRot,
Her(..), rHer,cHer,
WC(..), rWC,cWC,
SqWC(..), rSqWC, cSqWC,
PosDef(..), rPosDef, cPosDef,
RM,CM, rM,cM
) where
import Numeric.LinearAlgebra
import Test.QuickCheck
import Control.Monad(replicateM)
instance (Arbitrary a, RealFloat a) => Arbitrary (Complex a) where
arbitrary = do
r <- arbitrary
i <- arbitrary
return (r:+i)
coarbitrary = undefined
chooseDim = sized $ \m -> choose (1,max 1 m)
instance (Field a, Arbitrary a) => Arbitrary (Vector a) where
arbitrary = do m <- chooseDim
l <- vector m
return $ fromList l
coarbitrary = undefined
instance (Element a, Arbitrary a) => Arbitrary (Matrix a) where
arbitrary = do
m <- chooseDim
n <- chooseDim
l <- vector (m*n)
return $ (m><n) l
coarbitrary = undefined
-- a square matrix
newtype (Sq a) = Sq (Matrix a) deriving Show
instance (Element a, Arbitrary a) => Arbitrary (Sq a) where
arbitrary = do
n <- chooseDim
l <- vector (n*n)
return $ Sq $ (n><n) l
coarbitrary = undefined
-- a unitary matrix
newtype (Rot a) = Rot (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Rot a) where
arbitrary = do
Sq m <- arbitrary
let (q,_) = qr m
return (Rot q)
coarbitrary = undefined
-- a complex hermitian or real symmetric matrix
newtype (Her a) = Her (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Her a) where
arbitrary = do
Sq m <- arbitrary
let m' = m/2
return $ Her (m' + ctrans m')
coarbitrary = undefined
-- a well-conditioned general matrix (the singular values are between 1 and 100)
newtype (WC a) = WC (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (WC a) where
arbitrary = do
m <- arbitrary
let (u,_,v) = svd m
r = rows m
c = cols m
n = min r c
sv <- replicateM n (choose (1,100))
let s = diagRect (fromList sv) r c
return $ WC (u <> real s <> trans v)
coarbitrary = undefined
-- a well-conditioned square matrix (the singular values are between 1 and 100)
newtype (SqWC a) = SqWC (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (SqWC a) where
arbitrary = do
Sq m <- arbitrary
let (u,_,v) = svd m
n = rows m
sv <- replicateM n (choose (1,100))
let s = diag (fromList sv)
return $ SqWC (u <> real s <> trans v)
coarbitrary = undefined
-- a positive definite square matrix (the eigenvalues are between 0 and 100)
newtype (PosDef a) = PosDef (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (PosDef a) where
arbitrary = do
Her m <- arbitrary
let (_,v) = eigSH m
n = rows m
l <- replicateM n (choose (0,100))
let s = diag (fromList l)
p = v <> real s <> ctrans v
return $ PosDef (0.5 .* p + 0.5 .* ctrans p)
coarbitrary = undefined
type RM = Matrix Double
type CM = Matrix (Complex Double)
rM m = m :: RM
cM m = m :: CM
rHer (Her m) = m :: RM
cHer (Her m) = m :: CM
rRot (Rot m) = m :: RM
cRot (Rot m) = m :: CM
rSq (Sq m) = m :: RM
cSq (Sq m) = m :: CM
rWC (WC m) = m :: RM
cWC (WC m) = m :: CM
rSqWC (SqWC m) = m :: RM
cSqWC (SqWC m) = m :: CM
rPosDef (PosDef m) = m :: RM
cPosDef (PosDef m) = m :: CM
|