summaryrefslogtreecommitdiff
path: root/lib/Numeric/LinearAlgebra/Util.hs
blob: 3e4f6a90459d3de67cb17f7bc78bb1b83679b108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
{-# LANGUAGE FlexibleContexts #-}
-----------------------------------------------------------------------------
{- |
Module      :  Numeric.LinearAlgebra.Util
Copyright   :  (c) Alberto Ruiz 2013
License     :  GPL

Maintainer  :  Alberto Ruiz (aruiz at um dot es)
Stability   :  provisional

-}
-----------------------------------------------------------------------------

module Numeric.LinearAlgebra.Util(
    
    -- * Convenience functions
    size, disp,
    zeros, ones,
    diagl,
    row,
    col,
    (&),(!), (#),
    rand, randn,
    cross,
    norm,
    unitary,
    mt,
    pairwiseD2,
    rowOuters,
    null1,
    null1sym,
    -- * Convolution
    -- ** 1D
    corr, conv, corrMin,
    -- ** 2D
    corr2, conv2, separable,
    -- * Tools for the Kronecker product
    --
    -- | (see A. Fusiello, A matter of notation: Several uses of the Kronecker product in
    --  3d computer vision, Pattern Recognition Letters 28 (15) (2007) 2127-2132)

    --
    -- | @`vec` (a \<> x \<> b) == ('trans' b ` 'kronecker' ` a) \<> 'vec' x@
    vec,
    vech,
    dup,
    vtrans
) where

import Numeric.LinearAlgebra hiding (i)
import System.Random(randomIO)
import Numeric.LinearAlgebra.Util.Convolution


disp :: Int -> Matrix Double -> IO ()
-- ^ show a matrix with given number of digits after the decimal point
disp n = putStrLn . dispf n

-- | pseudorandom matrix with uniform elements between 0 and 1
randm :: RandDist
     -> Int -- ^ rows
     -> Int -- ^ columns
     -> IO (Matrix Double)
randm d r c = do
    seed <- randomIO
    return (reshape c $ randomVector seed d (r*c))

-- | pseudorandom matrix with uniform elements between 0 and 1
rand :: Int -> Int -> IO (Matrix Double)
rand = randm Uniform

-- | pseudorandom matrix with normal elements
randn :: Int -> Int -> IO (Matrix Double)
randn = randm Gaussian

-- | create a real diagonal matrix from a list
diagl :: [Double] -> Matrix Double
diagl = diag . fromList

-- | a real matrix of zeros
zeros :: Int -- ^ rows
      -> Int -- ^ columns
      -> Matrix Double
zeros r c = konst 0 (r,c)

-- | a real matrix of ones
ones :: Int -- ^ rows
     -> Int -- ^ columns
     -> Matrix Double
ones r c = konst 1 (r,c)

-- | concatenation of real vectors
infixl 3 &
(&) :: Vector Double -> Vector Double -> Vector Double
a & b = join [a,b]

-- | horizontal concatenation of real matrices
infixl 3 !
(!) :: Matrix Double -> Matrix Double -> Matrix Double
a ! b = fromBlocks [[a,b]]

-- | vertical concatenation of real matrices
(#) :: Matrix Double -> Matrix Double -> Matrix Double
infixl 2 #
a # b = fromBlocks [[a],[b]]

-- | create a single row real matrix from a list
row :: [Double] -> Matrix Double
row = asRow . fromList

-- | create a single column real matrix from a list
col :: [Double] -> Matrix Double
col = asColumn . fromList

cross :: Vector Double -> Vector Double -> Vector Double
-- ^ cross product (for three-element real vectors)
cross x y | dim x == 3 && dim y == 3 = fromList [z1,z2,z3]
          | otherwise = error $ "cross ("++show x++") ("++show y++")"
  where
    [x1,x2,x3] = toList x
    [y1,y2,y3] = toList y
    z1 = x2*y3-x3*y2
    z2 = x3*y1-x1*y3
    z3 = x1*y2-x2*y1

norm :: Vector Double -> Double
-- ^ 2-norm of real vector
norm = pnorm PNorm2


-- | Obtains a vector in the same direction with 2-norm=1
unitary :: Vector Double -> Vector Double
unitary v = v / scalar (norm v)

-- | (rows &&& cols)
size :: Matrix t -> (Int, Int)
size m = (rows m, cols m)

-- | trans . inv
mt :: Matrix Double -> Matrix Double
mt = trans . inv

----------------------------------------------------------------------

-- | Matrix of pairwise squared distances of row vectors
-- (using the matrix product trick in blog.smola.org)
pairwiseD2 :: Matrix Double -> Matrix Double -> Matrix Double
pairwiseD2 x y | ok = x2 `outer` oy + ox `outer` y2 - 2* x <> trans y
               | otherwise = error $ "pairwiseD2 with different number of columns: "
                                   ++ show (size x) ++ ", " ++ show (size y)
  where
    ox = one (rows x)
    oy = one (rows y)
    oc = one (cols x)
    one k = constant 1 k
    x2 = x * x <> oc
    y2 = y * y <> oc
    ok = cols x == cols y

--------------------------------------------------------------------------------

-- | outer products of rows
rowOuters :: Matrix Double -> Matrix Double -> Matrix Double
rowOuters a b = a' * b'
  where
    a' = kronecker a (ones 1 (cols b))
    b' = kronecker (ones 1 (cols a)) b

--------------------------------------------------------------------------------

-- | solution of overconstrained homogeneous linear system
null1 :: Matrix Double -> Vector Double
null1 = last . toColumns . snd . rightSV

-- | solution of overconstrained homogeneous symmetric linear system
null1sym :: Matrix Double -> Vector Double
null1sym = last . toColumns . snd . eigSH'

--------------------------------------------------------------------------------

vec :: Element t => Matrix t -> Vector t
-- ^ stacking of columns
vec = flatten . trans


vech :: Element t => Matrix t -> Vector t
-- ^ half-vectorization (of the lower triangular part)
vech m = join . zipWith f [0..] . toColumns $ m
  where
    f k v = subVector k (dim v - k) v


dup :: (Num t, Num (Vector t), Element t) => Int -> Matrix t
-- ^ duplication matrix (@'dup' k \<> 'vech' m == 'vec' m@, for symmetric m of 'dim' k)
dup k = trans $ fromRows $ map f es
  where
    rs = zip [0..] (toRows (ident (k^(2::Int))))
    es = [(i,j) | j <- [0..k-1], i <- [0..k-1], i>=j ]
    f (i,j) | i == j = g (k*j + i)
            | otherwise = g (k*j + i) + g (k*i + j)
    g j = v
      where
        Just v = lookup j rs


vtrans :: Element t => Int -> Matrix t -> Matrix t
-- ^ generalized \"vector\" transposition: @'vtrans' 1 == 'trans'@, and @'vtrans' ('rows' m) m == 'asColumn' ('vec' m)@
vtrans p m | r == 0 = fromBlocks . map (map asColumn . takesV (replicate q p)) . toColumns $ m
           | otherwise = error $ "vtrans " ++ show p ++ " of matrix with " ++ show (rows m) ++ " rows"
  where
    (q,r) = divMod (rows m) p