1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
--{-# LANGUAGE FunctionalDependencies #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.Vector
-- Copyright : (c) Alberto Ruiz 2007
-- License : GPL-style
--
-- Maintainer : Alberto Ruiz <aruiz@um.es>
-- Stability : provisional
-- Portability : portable
--
-- Numeric instances and functions for 'Data.Packed.Vector's
--
-----------------------------------------------------------------------------
module Numeric.Vector (
-- * Vector creation
constant, linspace,
module Data.Packed.Vector
) where
import Data.Complex
import Control.Monad(ap)
import Data.Packed.Vector
import Data.Packed.Internal.Matrix(Element(..))
import Data.Packed.Internal.Vector(asComplex,asReal)
import Data.Packed.Matrix(toColumns,fromColumns,flatten,reshape)
import Numeric.GSL.Vector
import Numeric.Container
--import Numeric.LinearAlgebra.Linear
-------------------------------------------------------------------
#ifndef VECTOR
import Foreign(Storable)
#endif
------------------------------------------------------------------
#ifndef VECTOR
instance (Show a, Storable a) => (Show (Vector a)) where
show v = (show (dim v))++" |> " ++ show (toList v)
#endif
#ifdef VECTOR
instance (Element a, Read a) => Read (Vector a) where
readsPrec _ s = [(fromList . read $ listnums, rest)]
where (thing,trest) = breakAt ']' s
(dims,listnums) = breakAt ' ' (dropWhile (==' ') thing)
rest = drop 31 trest
#else
instance (Element a, Read a) => Read (Vector a) where
readsPrec _ s = [((d |>) . read $ listnums, rest)]
where (thing,rest) = breakAt ']' s
(dims,listnums) = breakAt '>' thing
d = read . init . fst . breakAt '|' $ dims
#endif
breakAt c l = (a++[c],tail b) where
(a,b) = break (==c) l
------------------------------------------------------------------
{- | creates a vector with a given number of equal components:
@> constant 2 7
7 |> [2.0,2.0,2.0,2.0,2.0,2.0,2.0]@
-}
constant :: Element a => a -> Int -> Vector a
-- constant x n = runSTVector (newVector x n)
constant = constantD -- about 2x faster
{- | Creates a real vector containing a range of values:
@\> linspace 5 (-3,7)
5 |> [-3.0,-0.5,2.0,4.5,7.0]@
Logarithmic spacing can be defined as follows:
@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Enum e, Linear Vector e) => Int -> (e, e) -> Vector e
linspace n (a,b) = addConstant a $ scale s $ fromList [0 .. fromIntegral n-1]
where s = (b-a)/fromIntegral (n-1)
------------------------------------------------------------------
adaptScalar f1 f2 f3 x y
| dim x == 1 = f1 (x@>0) y
| dim y == 1 = f3 x (y@>0)
| otherwise = f2 x y
------------------------------------------------------------------
#ifndef VECTOR
instance Linear Vector a => Eq (Vector a) where
(==) = equal
#endif
instance Num (Vector Float) where
(+) = adaptScalar addConstant add (flip addConstant)
negate = scale (-1)
(*) = adaptScalar scale mul (flip scale)
signum = vectorMapF Sign
abs = vectorMapF Abs
fromInteger = fromList . return . fromInteger
instance Num (Vector Double) where
(+) = adaptScalar addConstant add (flip addConstant)
negate = scale (-1)
(*) = adaptScalar scale mul (flip scale)
signum = vectorMapR Sign
abs = vectorMapR Abs
fromInteger = fromList . return . fromInteger
instance Num (Vector (Complex Double)) where
(+) = adaptScalar addConstant add (flip addConstant)
negate = scale (-1)
(*) = adaptScalar scale mul (flip scale)
signum = vectorMapC Sign
abs = vectorMapC Abs
fromInteger = fromList . return . fromInteger
instance Num (Vector (Complex Float)) where
(+) = adaptScalar addConstant add (flip addConstant)
negate = scale (-1)
(*) = adaptScalar scale mul (flip scale)
signum = vectorMapQ Sign
abs = vectorMapQ Abs
fromInteger = fromList . return . fromInteger
---------------------------------------------------
instance (Linear Vector a, Num (Vector a)) => Fractional (Vector a) where
fromRational n = fromList [fromRational n]
(/) = adaptScalar f divide g where
r `f` v = scaleRecip r v
v `g` r = scale (recip r) v
-------------------------------------------------------
instance Floating (Vector Float) where
sin = vectorMapF Sin
cos = vectorMapF Cos
tan = vectorMapF Tan
asin = vectorMapF ASin
acos = vectorMapF ACos
atan = vectorMapF ATan
sinh = vectorMapF Sinh
cosh = vectorMapF Cosh
tanh = vectorMapF Tanh
asinh = vectorMapF ASinh
acosh = vectorMapF ACosh
atanh = vectorMapF ATanh
exp = vectorMapF Exp
log = vectorMapF Log
sqrt = vectorMapF Sqrt
(**) = adaptScalar (vectorMapValF PowSV) (vectorZipF Pow) (flip (vectorMapValF PowVS))
pi = fromList [pi]
-------------------------------------------------------------
instance Floating (Vector Double) where
sin = vectorMapR Sin
cos = vectorMapR Cos
tan = vectorMapR Tan
asin = vectorMapR ASin
acos = vectorMapR ACos
atan = vectorMapR ATan
sinh = vectorMapR Sinh
cosh = vectorMapR Cosh
tanh = vectorMapR Tanh
asinh = vectorMapR ASinh
acosh = vectorMapR ACosh
atanh = vectorMapR ATanh
exp = vectorMapR Exp
log = vectorMapR Log
sqrt = vectorMapR Sqrt
(**) = adaptScalar (vectorMapValR PowSV) (vectorZipR Pow) (flip (vectorMapValR PowVS))
pi = fromList [pi]
-------------------------------------------------------------
instance Floating (Vector (Complex Double)) where
sin = vectorMapC Sin
cos = vectorMapC Cos
tan = vectorMapC Tan
asin = vectorMapC ASin
acos = vectorMapC ACos
atan = vectorMapC ATan
sinh = vectorMapC Sinh
cosh = vectorMapC Cosh
tanh = vectorMapC Tanh
asinh = vectorMapC ASinh
acosh = vectorMapC ACosh
atanh = vectorMapC ATanh
exp = vectorMapC Exp
log = vectorMapC Log
sqrt = vectorMapC Sqrt
(**) = adaptScalar (vectorMapValC PowSV) (vectorZipC Pow) (flip (vectorMapValC PowVS))
pi = fromList [pi]
-----------------------------------------------------------
instance Floating (Vector (Complex Float)) where
sin = vectorMapQ Sin
cos = vectorMapQ Cos
tan = vectorMapQ Tan
asin = vectorMapQ ASin
acos = vectorMapQ ACos
atan = vectorMapQ ATan
sinh = vectorMapQ Sinh
cosh = vectorMapQ Cosh
tanh = vectorMapQ Tanh
asinh = vectorMapQ ASinh
acosh = vectorMapQ ACosh
atanh = vectorMapQ ATanh
exp = vectorMapQ Exp
log = vectorMapQ Log
sqrt = vectorMapQ Sqrt
(**) = adaptScalar (vectorMapValQ PowSV) (vectorZipQ Pow) (flip (vectorMapValQ PowVS))
pi = fromList [pi]
-----------------------------------------------------------
-- instance (Storable a, Num (Vector a)) => Monoid (Vector a) where
-- mempty = 0 { idim = 0 }
-- mappend a b = mconcat [a,b]
-- mconcat = j . filter ((>0).dim)
-- where j [] = mempty
-- j l = join l
---------------------------------------------------------------
-- instance (NFData a, Storable a) => NFData (Vector a) where
-- rnf = rnf . (@>0)
--
-- instance (NFData a, Element a) => NFData (Matrix a) where
-- rnf = rnf . flatten
---------------------------------------------------------------
-- | obtains the complex conjugate of a complex vector
conjV :: (RealElement a) => Vector (Complex a) -> Vector (Complex a)
conjV = mapVector conjugate
-- | creates a complex vector from vectors with real and imaginary parts
toComplexV :: (RealElement a) => (Vector a, Vector a) -> Vector (Complex a)
toComplexV (r,i) = asComplex $ flatten $ fromColumns [r,i]
-- | the inverse of 'toComplex'
fromComplexV :: (RealElement a) => Vector (Complex a) -> (Vector a, Vector a)
fromComplexV z = (r,i) where
[r,i] = toColumns $ reshape 2 $ asReal z
--------------------------------------------------------------------------
instance NumericContainer Vector where
toComplex = toComplexV
fromComplex = fromComplexV
complex' v = toComplex (v,constant 0 (dim v))
conj = conjV
-- cmap = mapVector
single' = double2FloatG
double' = float2DoubleG
--------------------------------------------------------------------------
instance Linear Vector Float where
scale = vectorMapValF Scale
scaleRecip = vectorMapValF Recip
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
divide = vectorZipF Div
equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
scalar x = fromList [x]
--
instance Container Vector Float where
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarF MinIdx
maxIndex = round . toScalarF MaxIdx
minElement = toScalarF Min
maxElement = toScalarF Max
sumElements = sumF
prodElements = prodF
instance Linear Vector Double where
scale = vectorMapValR Scale
scaleRecip = vectorMapValR Recip
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
divide = vectorZipR Div
equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
scalar x = fromList [x]
--
instance Container Vector Double where
cmap = mapVector
atIndex = (@>)
minIndex = round . toScalarR MinIdx
maxIndex = round . toScalarR MaxIdx
minElement = toScalarR Min
maxElement = toScalarR Max
sumElements = sumR
prodElements = prodR
instance Linear Vector (Complex Double) where
scale = vectorMapValC Scale
scaleRecip = vectorMapValC Recip
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
divide = vectorZipC Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
scalar x = fromList [x]
--
instance Container Vector (Complex Double) where
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumC
prodElements = prodC
instance Linear Vector (Complex Float) where
scale = vectorMapValQ Scale
scaleRecip = vectorMapValQ Recip
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
divide = vectorZipQ Div
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
scalar x = fromList [x]
--
instance Container Vector (Complex Float) where
cmap = mapVector
atIndex = (@>)
minIndex = minIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
maxIndex = maxIndex . fst . fromComplex . (zipVectorWith (*) `ap` mapVector conjugate)
minElement = ap (@>) minIndex
maxElement = ap (@>) maxIndex
sumElements = sumQ
prodElements = prodQ
---------------------------------------------------------------
|