1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
{-# LANGUAGE ForeignFunctionInterface #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE BangPatterns #-}
-- |
-- Module : Data.Packed.Internal.Matrix
-- Copyright : (c) Alberto Ruiz 2007
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- Internal matrix representation
--
module Data.Packed.Internal.Matrix(
Matrix(..), rows, cols, cdat, fdat,
MatrixOrder(..), orderOf,
createMatrix, mat,
cmat, fmat,
toLists, flatten, reshape,
Element(..),
trans,
fromRows, toRows, fromColumns, toColumns,
matrixFromVector,
subMatrix,
liftMatrix, liftMatrix2,
(@@>), atM',
singleton,
emptyM,
size, shSize, conformVs, conformMs, conformVTo, conformMTo
) where
import Data.Packed.Internal.Common
import Data.Packed.Internal.Signatures
import Data.Packed.Internal.Vector
import Foreign.Marshal.Alloc(alloca, free)
import Foreign.Marshal.Array(newArray)
import Foreign.Ptr(Ptr, castPtr)
import Foreign.Storable(Storable, peekElemOff, pokeElemOff, poke, sizeOf)
import Data.Complex(Complex)
import Foreign.C.Types
import System.IO.Unsafe(unsafePerformIO)
import Control.DeepSeq
-----------------------------------------------------------------
{- Design considerations for the Matrix Type
-----------------------------------------
- we must easily handle both row major and column major order,
for bindings to LAPACK and GSL/C
- we'd like to simplify redundant matrix transposes:
- Some of them arise from the order requirements of some functions
- some functions (matrix product) admit transposed arguments
- maybe we don't really need this kind of simplification:
- more complex code
- some computational overhead
- only appreciable gain in code with a lot of redundant transpositions
and cheap matrix computations
- we could carry both the matrix and its (lazily computed) transpose.
This may save some transpositions, but it is necessary to keep track of the
data which is actually computed to be used by functions like the matrix product
which admit both orders.
- but if we need the transposed data and it is not in the structure, we must make
sure that we touch the same foreignptr that is used in the computation.
- a reasonable solution is using two constructors for a matrix. Transposition just
"flips" the constructor. Actual data transposition is not done if followed by a
matrix product or another transpose.
-}
data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)
transOrder RowMajor = ColumnMajor
transOrder ColumnMajor = RowMajor
{- | Matrix representation suitable for BLAS\/LAPACK computations.
The elements are stored in a continuous memory array.
-}
data Matrix t = Matrix { irows :: {-# UNPACK #-} !Int
, icols :: {-# UNPACK #-} !Int
, xdat :: {-# UNPACK #-} !(Vector t)
, order :: !MatrixOrder }
-- RowMajor: preferred by C, fdat may require a transposition
-- ColumnMajor: preferred by LAPACK, cdat may require a transposition
cdat = xdat
fdat = xdat
rows :: Matrix t -> Int
rows = irows
cols :: Matrix t -> Int
cols = icols
orderOf :: Matrix t -> MatrixOrder
orderOf = order
-- | Matrix transpose.
trans :: Matrix t -> Matrix t
trans Matrix {irows = r, icols = c, xdat = d, order = o } = Matrix { irows = c, icols = r, xdat = d, order = transOrder o}
cmat :: (Element t) => Matrix t -> Matrix t
cmat m@Matrix{order = RowMajor} = m
cmat Matrix {irows = r, icols = c, xdat = d, order = ColumnMajor } = Matrix { irows = r, icols = c, xdat = transdata r d c, order = RowMajor}
fmat :: (Element t) => Matrix t -> Matrix t
fmat m@Matrix{order = ColumnMajor} = m
fmat Matrix {irows = r, icols = c, xdat = d, order = RowMajor } = Matrix { irows = r, icols = c, xdat = transdata c d r, order = ColumnMajor}
-- C-Haskell matrix adapter
-- mat :: Adapt (CInt -> CInt -> Ptr t -> r) (Matrix t) r
mat :: (Storable t) => Matrix t -> (((CInt -> CInt -> Ptr t -> t1) -> t1) -> IO b) -> IO b
mat a f =
unsafeWith (xdat a) $ \p -> do
let m g = do
g (fi (rows a)) (fi (cols a)) p
f m
{- | Creates a vector by concatenation of rows. If the matrix is ColumnMajor, this operation requires a transpose.
>>> flatten (ident 3)
fromList [1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0]
-}
flatten :: Element t => Matrix t -> Vector t
flatten = xdat . cmat
{-
type Mt t s = Int -> Int -> Ptr t -> s
infixr 6 ::>
type t ::> s = Mt t s
-}
-- | the inverse of 'Data.Packed.Matrix.fromLists'
toLists :: (Element t) => Matrix t -> [[t]]
toLists m = splitEvery (cols m) . toList . flatten $ m
-- | Create a matrix from a list of vectors.
-- All vectors must have the same dimension,
-- or dimension 1, which is are automatically expanded.
fromRows :: Element t => [Vector t] -> Matrix t
fromRows [] = emptyM 0 0
fromRows vs = case compatdim (map dim vs) of
Nothing -> error $ "fromRows expects vectors with equal sizes (or singletons), given: " ++ show (map dim vs)
Just 0 -> emptyM r 0
Just c -> matrixFromVector RowMajor r c . vjoin . map (adapt c) $ vs
where
r = length vs
adapt c v
| c == 0 = fromList[]
| dim v == c = v
| otherwise = constantD (v@>0) c
-- | extracts the rows of a matrix as a list of vectors
toRows :: Element t => Matrix t -> [Vector t]
toRows m
| c == 0 = replicate r (fromList[])
| otherwise = toRows' 0
where
v = flatten m
r = rows m
c = cols m
toRows' k | k == r*c = []
| otherwise = subVector k c v : toRows' (k+c)
-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Element t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m
-- | Creates a list of vectors from the columns of a matrix
toColumns :: Element t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m
-- | Reads a matrix position.
(@@>) :: Storable t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
m@Matrix {irows = r, icols = c} @@> (i,j)
| safe = if i<0 || i>=r || j<0 || j>=c
then error "matrix indexing out of range"
else atM' m i j
| otherwise = atM' m i j
{-# INLINE (@@>) #-}
-- Unsafe matrix access without range checking
atM' Matrix {icols = c, xdat = v, order = RowMajor} i j = v `at'` (i*c+j)
atM' Matrix {irows = r, xdat = v, order = ColumnMajor} i j = v `at'` (j*r+i)
{-# INLINE atM' #-}
------------------------------------------------------------------
matrixFromVector o r c v
| r * c == dim v = m
| otherwise = error $ "can't reshape vector dim = "++ show (dim v)++" to matrix " ++ shSize m
where
m = Matrix { irows = r, icols = c, xdat = v, order = o }
-- allocates memory for a new matrix
createMatrix :: (Storable a) => MatrixOrder -> Int -> Int -> IO (Matrix a)
createMatrix ord r c = do
p <- createVector (r*c)
return (matrixFromVector ord r c p)
{- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. (GNU-Octave groups by columns. To do it you can define @reshapeF r = trans . reshape r@
where r is the desired number of rows.)
>>> reshape 4 (fromList [1..12])
(3><4)
[ 1.0, 2.0, 3.0, 4.0
, 5.0, 6.0, 7.0, 8.0
, 9.0, 10.0, 11.0, 12.0 ]
-}
reshape :: Storable t => Int -> Vector t -> Matrix t
reshape 0 v = matrixFromVector RowMajor 0 0 v
reshape c v = matrixFromVector RowMajor (dim v `div` c) c v
singleton x = reshape 1 (fromList [x])
-- | application of a vector function on the flattened matrix elements
liftMatrix :: (Storable a, Storable b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
liftMatrix f Matrix { irows = r, icols = c, xdat = d, order = o } = matrixFromVector o r c (f d)
-- | application of a vector function on the flattened matrices elements
liftMatrix2 :: (Element t, Element a, Element b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2 f m1 m2
| not (compat m1 m2) = error "nonconformant matrices in liftMatrix2"
| otherwise = case orderOf m1 of
RowMajor -> matrixFromVector RowMajor (rows m1) (cols m1) (f (xdat m1) (flatten m2))
ColumnMajor -> matrixFromVector ColumnMajor (rows m1) (cols m1) (f (xdat m1) ((xdat.fmat) m2))
compat :: Matrix a -> Matrix b -> Bool
compat m1 m2 = rows m1 == rows m2 && cols m1 == cols m2
------------------------------------------------------------------
{- | Supported matrix elements.
This class provides optimized internal
operations for selected element types.
It provides unoptimised defaults for any 'Storable' type,
so you can create instances simply as:
@instance Element Foo@.
-}
class (Storable a) => Element a where
subMatrixD :: (Int,Int) -- ^ (r0,c0) starting position
-> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
-> Matrix a -> Matrix a
subMatrixD = subMatrix'
transdata :: Int -> Vector a -> Int -> Vector a
transdata = transdataP -- transdata'
constantD :: a -> Int -> Vector a
constantD = constantP -- constant'
instance Element Float where
transdata = transdataAux ctransF
constantD = constantAux cconstantF
instance Element Double where
transdata = transdataAux ctransR
constantD = constantAux cconstantR
instance Element (Complex Float) where
transdata = transdataAux ctransQ
constantD = constantAux cconstantQ
instance Element (Complex Double) where
transdata = transdataAux ctransC
constantD = constantAux cconstantC
-------------------------------------------------------------------
transdataAux fun c1 d c2 =
if noneed
then d
else unsafePerformIO $ do
v <- createVector (dim d)
unsafeWith d $ \pd ->
unsafeWith v $ \pv ->
fun (fi r1) (fi c1) pd (fi r2) (fi c2) pv // check "transdataAux"
return v
where r1 = dim d `div` c1
r2 = dim d `div` c2
noneed = dim d == 0 || r1 == 1 || c1 == 1
transdataP :: Storable a => Int -> Vector a -> Int -> Vector a
transdataP c1 d c2 =
if noneed
then d
else unsafePerformIO $ do
v <- createVector (dim d)
unsafeWith d $ \pd ->
unsafeWith v $ \pv ->
ctransP (fi r1) (fi c1) (castPtr pd) (fi sz) (fi r2) (fi c2) (castPtr pv) (fi sz) // check "transdataP"
return v
where r1 = dim d `div` c1
r2 = dim d `div` c2
sz = sizeOf (d @> 0)
noneed = dim d == 0 || r1 == 1 || c1 == 1
foreign import ccall unsafe "transF" ctransF :: TFMFM
foreign import ccall unsafe "transR" ctransR :: TMM
foreign import ccall unsafe "transQ" ctransQ :: TQMQM
foreign import ccall unsafe "transC" ctransC :: TCMCM
foreign import ccall unsafe "transP" ctransP :: CInt -> CInt -> Ptr () -> CInt -> CInt -> CInt -> Ptr () -> CInt -> IO CInt
----------------------------------------------------------------------
constantAux fun x n = unsafePerformIO $ do
v <- createVector n
px <- newArray [x]
app1 (fun px) vec v "constantAux"
free px
return v
foreign import ccall unsafe "constantF" cconstantF :: Ptr Float -> TF
foreign import ccall unsafe "constantR" cconstantR :: Ptr Double -> TV
foreign import ccall unsafe "constantQ" cconstantQ :: Ptr (Complex Float) -> TQV
foreign import ccall unsafe "constantC" cconstantC :: Ptr (Complex Double) -> TCV
constantP :: Storable a => a -> Int -> Vector a
constantP a n = unsafePerformIO $ do
let sz = sizeOf a
v <- createVector n
unsafeWith v $ \p -> do
alloca $ \k -> do
poke k a
cconstantP (castPtr k) (fi n) (castPtr p) (fi sz) // check "constantP"
return v
foreign import ccall unsafe "constantP" cconstantP :: Ptr () -> CInt -> Ptr () -> CInt -> IO CInt
----------------------------------------------------------------------
-- | Extracts a submatrix from a matrix.
subMatrix :: Element a
=> (Int,Int) -- ^ (r0,c0) starting position
-> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
-> Matrix a -- ^ input matrix
-> Matrix a -- ^ result
subMatrix (r0,c0) (rt,ct) m
| 0 <= r0 && 0 <= rt && r0+rt <= (rows m) &&
0 <= c0 && 0 <= ct && c0+ct <= (cols m) = subMatrixD (r0,c0) (rt,ct) m
| otherwise = error $ "wrong subMatrix "++
show ((r0,c0),(rt,ct))++" of "++show(rows m)++"x"++ show (cols m)
subMatrix'' (r0,c0) (rt,ct) c v = unsafePerformIO $ do
w <- createVector (rt*ct)
unsafeWith v $ \p ->
unsafeWith w $ \q -> do
let go (-1) _ = return ()
go !i (-1) = go (i-1) (ct-1)
go !i !j = do x <- peekElemOff p ((i+r0)*c+j+c0)
pokeElemOff q (i*ct+j) x
go i (j-1)
go (rt-1) (ct-1)
return w
subMatrix' (r0,c0) (rt,ct) (Matrix { icols = c, xdat = v, order = RowMajor}) = Matrix rt ct (subMatrix'' (r0,c0) (rt,ct) c v) RowMajor
subMatrix' (r0,c0) (rt,ct) m = trans $ subMatrix' (c0,r0) (ct,rt) (trans m)
--------------------------------------------------------------------------
maxZ xs = if minimum xs == 0 then 0 else maximum xs
conformMs ms = map (conformMTo (r,c)) ms
where
r = maxZ (map rows ms)
c = maxZ (map cols ms)
conformVs vs = map (conformVTo n) vs
where
n = maxZ (map dim vs)
conformMTo (r,c) m
| size m == (r,c) = m
| size m == (1,1) = matrixFromVector RowMajor r c (constantD (m@@>(0,0)) (r*c))
| size m == (r,1) = repCols c m
| size m == (1,c) = repRows r m
| otherwise = error $ "matrix " ++ shSize m ++ " cannot be expanded to (" ++ show r ++ "><"++ show c ++")"
conformVTo n v
| dim v == n = v
| dim v == 1 = constantD (v@>0) n
| otherwise = error $ "vector of dim=" ++ show (dim v) ++ " cannot be expanded to dim=" ++ show n
repRows n x = fromRows (replicate n (flatten x))
repCols n x = fromColumns (replicate n (flatten x))
size m = (rows m, cols m)
shSize m = "(" ++ show (rows m) ++"><"++ show (cols m)++")"
emptyM r c = matrixFromVector RowMajor r c (fromList[])
----------------------------------------------------------------------
instance (Storable t, NFData t) => NFData (Matrix t)
where
rnf m | d > 0 = rnf (v @> 0)
| otherwise = ()
where
d = dim v
v = xdat m
|