1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
|
{-# LANGUAGE FlexibleContexts, FlexibleInstances #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
-----------------------------------------------------------------------------
{- |
Module : Internal.Algorithms
Copyright : (c) Alberto Ruiz 2006-14
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
High level generic interface to common matrix computations.
Specific functions for particular base types can also be explicitly
imported from "Numeric.LinearAlgebra.LAPACK".
-}
-----------------------------------------------------------------------------
module Internal.Algorithms where
import Internal.Vector
import Internal.Matrix
import Internal.Element
import Internal.Conversion
import Internal.LAPACK as LAPACK
import Internal.Numeric
import Data.List(foldl1')
import qualified Data.Array as A
import Internal.ST
import Internal.Vectorized(range)
import Control.DeepSeq
{- | Generic linear algebra functions for double precision real and complex matrices.
(Single precision data can be converted using 'single' and 'double').
-}
class (Numeric t,
Convert t,
Normed Matrix t,
Normed Vector t,
Floating t,
Linear t Vector,
Linear t Matrix,
Additive (Vector t),
Additive (Matrix t),
RealOf t ~ Double) => Field t where
svd' :: Matrix t -> (Matrix t, Vector Double, Matrix t)
thinSVD' :: Matrix t -> (Matrix t, Vector Double, Matrix t)
sv' :: Matrix t -> Vector Double
luPacked' :: Matrix t -> (Matrix t, [Int])
luSolve' :: (Matrix t, [Int]) -> Matrix t -> Matrix t
mbLinearSolve' :: Matrix t -> Matrix t -> Maybe (Matrix t)
linearSolve' :: Matrix t -> Matrix t -> Matrix t
cholSolve' :: Matrix t -> Matrix t -> Matrix t
ldlPacked' :: Matrix t -> (Matrix t, [Int])
ldlSolve' :: (Matrix t, [Int]) -> Matrix t -> Matrix t
linearSolveSVD' :: Matrix t -> Matrix t -> Matrix t
linearSolveLS' :: Matrix t -> Matrix t -> Matrix t
eig' :: Matrix t -> (Vector (Complex Double), Matrix (Complex Double))
eigSH'' :: Matrix t -> (Vector Double, Matrix t)
eigOnly :: Matrix t -> Vector (Complex Double)
eigOnlySH :: Matrix t -> Vector Double
cholSH' :: Matrix t -> Matrix t
mbCholSH' :: Matrix t -> Maybe (Matrix t)
qr' :: Matrix t -> (Matrix t, Vector t)
qrgr' :: Int -> (Matrix t, Vector t) -> Matrix t
hess' :: Matrix t -> (Matrix t, Matrix t)
schur' :: Matrix t -> (Matrix t, Matrix t)
instance Field Double where
svd' = svdRd
thinSVD' = thinSVDRd
sv' = svR
luPacked' = luR
luSolve' (l_u,perm) = lusR l_u perm
linearSolve' = linearSolveR -- (luSolve . luPacked) ??
mbLinearSolve' = mbLinearSolveR
cholSolve' = cholSolveR
linearSolveLS' = linearSolveLSR
linearSolveSVD' = linearSolveSVDR Nothing
eig' = eigR
eigSH'' = eigS
eigOnly = eigOnlyR
eigOnlySH = eigOnlyS
cholSH' = cholS
mbCholSH' = mbCholS
qr' = qrR
qrgr' = qrgrR
hess' = unpackHess hessR
schur' = schurR
ldlPacked' = ldlR
ldlSolve'= uncurry ldlsR
instance Field (Complex Double) where
#ifdef NOZGESDD
svd' = svdC
thinSVD' = thinSVDC
#else
svd' = svdCd
thinSVD' = thinSVDCd
#endif
sv' = svC
luPacked' = luC
luSolve' (l_u,perm) = lusC l_u perm
linearSolve' = linearSolveC
mbLinearSolve' = mbLinearSolveC
cholSolve' = cholSolveC
linearSolveLS' = linearSolveLSC
linearSolveSVD' = linearSolveSVDC Nothing
eig' = eigC
eigOnly = eigOnlyC
eigSH'' = eigH
eigOnlySH = eigOnlyH
cholSH' = cholH
mbCholSH' = mbCholH
qr' = qrC
qrgr' = qrgrC
hess' = unpackHess hessC
schur' = schurC
ldlPacked' = ldlC
ldlSolve' = uncurry ldlsC
--------------------------------------------------------------
square m = rows m == cols m
vertical m = rows m >= cols m
exactHermitian m = m `equal` ctrans m
--------------------------------------------------------------
{- | Full singular value decomposition.
@
a = (5><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0
, 13.0, 14.0, 15.0 ] :: Matrix Double
@
>>> let (u,s,v) = svd a
>>> disp 3 u
5x5
-0.101 0.768 0.614 0.028 -0.149
-0.249 0.488 -0.503 0.172 0.646
-0.396 0.208 -0.405 -0.660 -0.449
-0.543 -0.072 -0.140 0.693 -0.447
-0.690 -0.352 0.433 -0.233 0.398
>>> s
fromList [35.18264833189422,1.4769076999800903,1.089145439970417e-15]
>>> disp 3 v
3x3
-0.519 -0.751 0.408
-0.576 -0.046 -0.816
-0.632 0.659 0.408
>>> let d = diagRect 0 s 5 3
>>> disp 3 d
5x3
35.183 0.000 0.000
0.000 1.477 0.000
0.000 0.000 0.000
0.000 0.000 0.000
>>> disp 3 $ u <> d <> tr v
5x3
1.000 2.000 3.000
4.000 5.000 6.000
7.000 8.000 9.000
10.000 11.000 12.000
13.000 14.000 15.000
-}
svd :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t)
svd = {-# SCC "svd" #-} g . svd'
where
g (u,s,v) = (u,s,tr v)
{- | A version of 'svd' which returns only the @min (rows m) (cols m)@ singular vectors of @m@.
If @(u,s,v) = thinSVD m@ then @m == u \<> diag s \<> tr v@.
@
a = (5><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0
, 13.0, 14.0, 15.0 ] :: Matrix Double
@
>>> let (u,s,v) = thinSVD a
>>> disp 3 u
5x3
-0.101 0.768 0.614
-0.249 0.488 -0.503
-0.396 0.208 -0.405
-0.543 -0.072 -0.140
-0.690 -0.352 0.433
>>> s
fromList [35.18264833189422,1.4769076999800903,1.089145439970417e-15]
>>> disp 3 v
3x3
-0.519 -0.751 0.408
-0.576 -0.046 -0.816
-0.632 0.659 0.408
>>> disp 3 $ u <> diag s <> tr v
5x3
1.000 2.000 3.000
4.000 5.000 6.000
7.000 8.000 9.000
10.000 11.000 12.000
13.000 14.000 15.000
-}
thinSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t)
thinSVD = {-# SCC "thinSVD" #-} g . thinSVD'
where
g (u,s,v) = (u,s,tr v)
-- | Singular values only.
singularValues :: Field t => Matrix t -> Vector Double
singularValues = {-# SCC "singularValues" #-} sv'
-- | A version of 'svd' which returns an appropriate diagonal matrix with the singular values.
--
-- If @(u,d,v) = fullSVD m@ then @m == u \<> d \<> tr v@.
fullSVD :: Field t => Matrix t -> (Matrix t, Matrix Double, Matrix t)
fullSVD m = (u,d,v) where
(u,s,v) = svd m
d = diagRect 0 s r c
r = rows m
c = cols m
{- | Similar to 'thinSVD', returning only the nonzero singular values and the corresponding singular vectors.
@
a = (5><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0
, 13.0, 14.0, 15.0 ] :: Matrix Double
@
>>> let (u,s,v) = compactSVD a
>>> disp 3 u
5x2
-0.101 0.768
-0.249 0.488
-0.396 0.208
-0.543 -0.072
-0.690 -0.352
>>> s
fromList [35.18264833189422,1.4769076999800903]
>>> disp 3 u
5x2
-0.101 0.768
-0.249 0.488
-0.396 0.208
-0.543 -0.072
-0.690 -0.352
>>> disp 3 $ u <> diag s <> tr v
5x3
1.000 2.000 3.000
4.000 5.000 6.000
7.000 8.000 9.000
10.000 11.000 12.000
13.000 14.000 15.000
-}
compactSVD :: Field t => Matrix t -> (Matrix t, Vector Double, Matrix t)
compactSVD m = (u', subVector 0 d s, v') where
(u,s,v) = thinSVD m
d = rankSVD (1*eps) m s `max` 1
u' = takeColumns d u
v' = takeColumns d v
-- | Singular values and all right singular vectors (as columns).
rightSV :: Field t => Matrix t -> (Vector Double, Matrix t)
rightSV m | vertical m = let (_,s,v) = thinSVD m in (s,v)
| otherwise = let (_,s,v) = svd m in (s,v)
-- | Singular values and all left singular vectors (as columns).
leftSV :: Field t => Matrix t -> (Matrix t, Vector Double)
leftSV m | vertical m = let (u,s,_) = svd m in (u,s)
| otherwise = let (u,s,_) = thinSVD m in (u,s)
--------------------------------------------------------------
-- | LU decomposition of a matrix in a compact format.
data LU t = LU (Matrix t) [Int] deriving Show
instance (NFData t, Numeric t) => NFData (LU t)
where
rnf (LU m _) = rnf m
-- | Obtains the LU decomposition of a matrix in a compact data structure suitable for 'luSolve'.
luPacked :: Field t => Matrix t -> LU t
luPacked x = {-# SCC "luPacked" #-} LU m p
where
(m,p) = luPacked' x
-- | Solution of a linear system (for several right hand sides) from the precomputed LU factorization obtained by 'luPacked'.
luSolve :: Field t => LU t -> Matrix t -> Matrix t
luSolve (LU m p) = {-# SCC "luSolve" #-} luSolve' (m,p)
-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
-- It is similar to 'luSolve' . 'luPacked', but @linearSolve@ raises an error if called on a singular system.
linearSolve :: Field t => Matrix t -> Matrix t -> Matrix t
linearSolve = {-# SCC "linearSolve" #-} linearSolve'
-- | Solve a linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, returning Nothing for a singular system. For underconstrained or overconstrained systems use 'linearSolveLS' or 'linearSolveSVD'.
mbLinearSolve :: Field t => Matrix t -> Matrix t -> Maybe (Matrix t)
mbLinearSolve = {-# SCC "linearSolve" #-} mbLinearSolve'
-- | Solve a symmetric or Hermitian positive definite linear system using a precomputed Cholesky decomposition obtained by 'chol'.
cholSolve
:: Field t
=> Matrix t -- ^ Cholesky decomposition of the coefficient matrix
-> Matrix t -- ^ right hand sides
-> Matrix t -- ^ solution
cholSolve = {-# SCC "cholSolve" #-} cholSolve'
-- | Minimum norm solution of a general linear least squares problem Ax=B using the SVD. Admits rank-deficient systems but it is slower than 'linearSolveLS'. The effective rank of A is determined by treating as zero those singular valures which are less than 'eps' times the largest singular value.
linearSolveSVD :: Field t => Matrix t -> Matrix t -> Matrix t
linearSolveSVD = {-# SCC "linearSolveSVD" #-} linearSolveSVD'
-- | Least squared error solution of an overconstrained linear system, or the minimum norm solution of an underconstrained system. For rank-deficient systems use 'linearSolveSVD'.
linearSolveLS :: Field t => Matrix t -> Matrix t -> Matrix t
linearSolveLS = {-# SCC "linearSolveLS" #-} linearSolveLS'
--------------------------------------------------------------------------------
-- | LDL decomposition of a complex Hermitian or real symmetric matrix in a compact format.
data LDL t = LDL (Matrix t) [Int] deriving Show
instance (NFData t, Numeric t) => NFData (LDL t)
where
rnf (LDL m _) = rnf m
-- | Similar to 'ldlPacked', without checking that the input matrix is hermitian or symmetric. It works with the lower triangular part.
ldlPackedSH :: Field t => Matrix t -> LDL t
ldlPackedSH x = {-# SCC "ldlPacked" #-} LDL m p
where
(m,p) = ldlPacked' x
-- | Obtains the LDL decomposition of a matrix in a compact data structure suitable for 'ldlSolve'.
ldlPacked :: Field t => Herm t -> LDL t
ldlPacked (Herm m) = ldlPackedSH m
-- | Solution of a linear system (for several right hand sides) from a precomputed LDL factorization obtained by 'ldlPacked'.
--
-- Note: this can be slower than the general solver based on the LU decomposition.
ldlSolve :: Field t => LDL t -> Matrix t -> Matrix t
ldlSolve (LDL m p) = {-# SCC "ldlSolve" #-} ldlSolve' (m,p)
--------------------------------------------------------------
{- | Eigenvalues (not ordered) and eigenvectors (as columns) of a general square matrix.
If @(s,v) = eig m@ then @m \<> v == v \<> diag s@
@
a = (3><3)
[ 3, 0, -2
, 4, 5, -1
, 3, 1, 0 ] :: Matrix Double
@
>>> let (l, v) = eig a
>>> putStr . dispcf 3 . asRow $ l
1x3
1.925+1.523i 1.925-1.523i 4.151
>>> putStr . dispcf 3 $ v
3x3
-0.455+0.365i -0.455-0.365i 0.181
0.603 0.603 -0.978
0.033+0.543i 0.033-0.543i -0.104
>>> putStr . dispcf 3 $ complex a <> v
3x3
-1.432+0.010i -1.432-0.010i 0.753
1.160+0.918i 1.160-0.918i -4.059
-0.763+1.096i -0.763-1.096i -0.433
>>> putStr . dispcf 3 $ v <> diag l
3x3
-1.432+0.010i -1.432-0.010i 0.753
1.160+0.918i 1.160-0.918i -4.059
-0.763+1.096i -0.763-1.096i -0.433
-}
eig :: Field t => Matrix t -> (Vector (Complex Double), Matrix (Complex Double))
eig = {-# SCC "eig" #-} eig'
-- | Eigenvalues (not ordered) of a general square matrix.
eigenvalues :: Field t => Matrix t -> Vector (Complex Double)
eigenvalues = {-# SCC "eigenvalues" #-} eigOnly
-- | Similar to 'eigSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part.
eigSH' :: Field t => Matrix t -> (Vector Double, Matrix t)
eigSH' = {-# SCC "eigSH'" #-} eigSH''
-- | Similar to 'eigenvaluesSH' without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part.
eigenvaluesSH' :: Field t => Matrix t -> Vector Double
eigenvaluesSH' = {-# SCC "eigenvaluesSH'" #-} eigOnlySH
{- | Eigenvalues and eigenvectors (as columns) of a complex hermitian or real symmetric matrix, in descending order.
If @(s,v) = eigSH m@ then @m == v \<> diag s \<> tr v@
@
a = (3><3)
[ 1.0, 2.0, 3.0
, 2.0, 4.0, 5.0
, 3.0, 5.0, 6.0 ]
@
>>> let (l, v) = eigSH a
>>> l
fromList [11.344814282762075,0.17091518882717918,-0.5157294715892575]
>>> disp 3 $ v <> diag l <> tr v
3x3
1.000 2.000 3.000
2.000 4.000 5.000
3.000 5.000 6.000
-}
eigSH :: Field t => Herm t -> (Vector Double, Matrix t)
eigSH (Herm m) = eigSH' m
-- | Eigenvalues (in descending order) of a complex hermitian or real symmetric matrix.
eigenvaluesSH :: Field t => Herm t -> Vector Double
eigenvaluesSH (Herm m) = eigenvaluesSH' m
--------------------------------------------------------------
-- | QR decomposition of a matrix in compact form. (The orthogonal matrix is not explicitly formed.)
data QR t = QR (Matrix t) (Vector t)
instance (NFData t, Numeric t) => NFData (QR t)
where
rnf (QR m _) = rnf m
-- | QR factorization.
--
-- If @(q,r) = qr m@ then @m == q \<> r@, where q is unitary and r is upper triangular.
qr :: Field t => Matrix t -> (Matrix t, Matrix t)
qr = {-# SCC "qr" #-} unpackQR . qr'
-- | Compute the QR decomposition of a matrix in compact form.
qrRaw :: Field t => Matrix t -> QR t
qrRaw m = QR x v
where
(x,v) = qr' m
-- | generate a matrix with k orthogonal columns from the compact QR decomposition obtained by 'qrRaw'.
--
qrgr :: Field t => Int -> QR t -> Matrix t
qrgr n (QR a t)
| dim t > min (cols a) (rows a) || n < 0 || n > dim t = error "qrgr expects k <= min(rows,cols)"
| otherwise = qrgr' n (a,t)
-- | RQ factorization.
--
-- If @(r,q) = rq m@ then @m == r \<> q@, where q is unitary and r is upper triangular.
rq :: Field t => Matrix t -> (Matrix t, Matrix t)
rq m = {-# SCC "rq" #-} (r,q) where
(q',r') = qr $ trans $ rev1 m
r = rev2 (trans r')
q = rev2 (trans q')
rev1 = flipud . fliprl
rev2 = fliprl . flipud
-- | Hessenberg factorization.
--
-- If @(p,h) = hess m@ then @m == p \<> h \<> tr p@, where p is unitary
-- and h is in upper Hessenberg form (it has zero entries below the first subdiagonal).
hess :: Field t => Matrix t -> (Matrix t, Matrix t)
hess = hess'
-- | Schur factorization.
--
-- If @(u,s) = schur m@ then @m == u \<> s \<> tr u@, where u is unitary
-- and s is a Shur matrix. A complex Schur matrix is upper triangular. A real Schur matrix is
-- upper triangular in 2x2 blocks.
--
-- \"Anything that the Jordan decomposition can do, the Schur decomposition
-- can do better!\" (Van Loan)
schur :: Field t => Matrix t -> (Matrix t, Matrix t)
schur = schur'
-- | Similar to 'cholSH', but instead of an error (e.g., caused by a matrix not positive definite) it returns 'Nothing'.
mbCholSH :: Field t => Matrix t -> Maybe (Matrix t)
mbCholSH = {-# SCC "mbCholSH" #-} mbCholSH'
-- | Similar to 'chol', without checking that the input matrix is hermitian or symmetric. It works with the upper triangular part.
cholSH :: Field t => Matrix t -> Matrix t
cholSH = cholSH'
-- | Cholesky factorization of a positive definite hermitian or symmetric matrix.
--
-- If @c = chol m@ then @c@ is upper triangular and @m == tr c \<> c@.
chol :: Field t => Herm t -> Matrix t
chol (Herm m) = {-# SCC "chol" #-} cholSH' m
-- | Similar to 'chol', but instead of an error (e.g., caused by a matrix not positive definite) it returns 'Nothing'.
mbChol :: Field t => Herm t -> Maybe (Matrix t)
mbChol (Herm m) = {-# SCC "mbChol" #-} mbCholSH' m
-- | Joint computation of inverse and logarithm of determinant of a square matrix.
invlndet :: Field t
=> Matrix t
-> (Matrix t, (t, t)) -- ^ (inverse, (log abs det, sign or phase of det))
invlndet m | square m = (im,(ladm,sdm))
| otherwise = error $ "invlndet of nonsquare "++ shSize m ++ " matrix"
where
lp@(LU lup perm) = luPacked m
s = signlp (rows m) perm
dg = toList $ takeDiag $ lup
ladm = sum $ map (log.abs) dg
sdm = s* product (map signum dg)
im = luSolve lp (ident (rows m))
-- | Determinant of a square matrix. To avoid possible overflow or underflow use 'invlndet'.
det :: Field t => Matrix t -> t
det m | square m = {-# SCC "det" #-} s * (product $ toList $ takeDiag $ lup)
| otherwise = error $ "det of nonsquare "++ shSize m ++ " matrix"
where
LU lup perm = luPacked m
s = signlp (rows m) perm
-- | Explicit LU factorization of a general matrix.
--
-- If @(l,u,p,s) = lu m@ then @m == p \<> l \<> u@, where l is lower triangular,
-- u is upper triangular, p is a permutation matrix and s is the signature of the permutation.
lu :: Field t => Matrix t -> (Matrix t, Matrix t, Matrix t, t)
lu = luFact . luPacked
-- | Inverse of a square matrix. See also 'invlndet'.
inv :: Field t => Matrix t -> Matrix t
inv m | square m = m `linearSolve` ident (rows m)
| otherwise = error $ "inv of nonsquare "++ shSize m ++ " matrix"
-- | Pseudoinverse of a general matrix with default tolerance ('pinvTol' 1, similar to GNU-Octave).
pinv :: Field t => Matrix t -> Matrix t
pinv = pinvTol 1
{- | @pinvTol r@ computes the pseudoinverse of a matrix with tolerance @tol=r*g*eps*(max rows cols)@, where g is the greatest singular value.
@
m = (3><3) [ 1, 0, 0
, 0, 1, 0
, 0, 0, 1e-10] :: Matrix Double
@
>>> pinv m
1. 0. 0.
0. 1. 0.
0. 0. 10000000000.
>>> pinvTol 1E8 m
1. 0. 0.
0. 1. 0.
0. 0. 1.
-}
pinvTol :: Field t => Double -> Matrix t -> Matrix t
pinvTol t m = v' `mXm` diag s' `mXm` ctrans u' where
(u,s,v) = thinSVD m
sl@(g:_) = toList s
s' = real . fromList . map rec $ sl
rec x = if x <= g*tol then x else 1/x
tol = (fromIntegral (max r c) * g * t * eps)
r = rows m
c = cols m
d = dim s
u' = takeColumns d u
v' = takeColumns d v
-- | Numeric rank of a matrix from the SVD decomposition.
rankSVD :: Element t
=> Double -- ^ numeric zero (e.g. 1*'eps')
-> Matrix t -- ^ input matrix m
-> Vector Double -- ^ 'sv' of m
-> Int -- ^ rank of m
rankSVD teps m s = ranksv teps (max (rows m) (cols m)) (toList s)
-- | Numeric rank of a matrix from its singular values.
ranksv :: Double -- ^ numeric zero (e.g. 1*'eps')
-> Int -- ^ maximum dimension of the matrix
-> [Double] -- ^ singular values
-> Int -- ^ rank of m
ranksv teps maxdim s = k where
g = maximum s
tol = fromIntegral maxdim * g * teps
s' = filter (>tol) s
k = if g > teps then length s' else 0
-- | The machine precision of a Double: @eps = 2.22044604925031e-16@ (the value used by GNU-Octave).
eps :: Double
eps = 2.22044604925031e-16
-- | 1 + 0.5*peps == 1, 1 + 0.6*peps /= 1
peps :: RealFloat x => x
peps = x where x = 2.0 ** fromIntegral (1 - floatDigits x)
-----------------------------------------------------------------------
-- | The nullspace of a matrix from its precomputed SVD decomposition.
nullspaceSVD :: Field t
=> Either Double Int -- ^ Left \"numeric\" zero (eg. 1*'eps'),
-- or Right \"theoretical\" matrix rank.
-> Matrix t -- ^ input matrix m
-> (Vector Double, Matrix t) -- ^ 'rightSV' of m
-> Matrix t -- ^ nullspace
nullspaceSVD hint a (s,v) = vs where
tol = case hint of
Left t -> t
_ -> eps
k = case hint of
Right t -> t
_ -> rankSVD tol a s
vs = dropColumns k v
-- | The nullspace of a matrix. See also 'nullspaceSVD'.
nullspacePrec :: Field t
=> Double -- ^ relative tolerance in 'eps' units (e.g., use 3 to get 3*'eps')
-> Matrix t -- ^ input matrix
-> [Vector t] -- ^ list of unitary vectors spanning the nullspace
nullspacePrec t m = toColumns $ nullspaceSVD (Left (t*eps)) m (rightSV m)
-- | The nullspace of a matrix, assumed to be one-dimensional, with machine precision.
nullVector :: Field t => Matrix t -> Vector t
nullVector = last . nullspacePrec 1
-- | The range space a matrix from its precomputed SVD decomposition.
orthSVD :: Field t
=> Either Double Int -- ^ Left \"numeric\" zero (eg. 1*'eps'),
-- or Right \"theoretical\" matrix rank.
-> Matrix t -- ^ input matrix m
-> (Matrix t, Vector Double) -- ^ 'leftSV' of m
-> Matrix t -- ^ orth
orthSVD hint a (v,s) = vs where
tol = case hint of
Left t -> t
_ -> eps
k = case hint of
Right t -> t
_ -> rankSVD tol a s
vs = takeColumns k v
orth :: Field t => Matrix t -> [Vector t]
-- ^ Return an orthonormal basis of the range space of a matrix
orth m = take r $ toColumns u
where
(u,s,_) = compactSVD m
r = ranksv eps (max (rows m) (cols m)) (toList s)
------------------------------------------------------------------------
-- many thanks, quickcheck!
haussholder :: (Field a) => a -> Vector a -> Matrix a
haussholder tau v = ident (dim v) `sub` (tau `scale` (w `mXm` ctrans w))
where w = asColumn v
zh k v = fromList $ replicate (k-1) 0 ++ (1:drop k xs)
where xs = toList v
zt 0 v = v
zt k v = vjoin [subVector 0 (dim v - k) v, konst' 0 k]
unpackQR :: (Field t) => (Matrix t, Vector t) -> (Matrix t, Matrix t)
unpackQR (pq, tau) = {-# SCC "unpackQR" #-} (q,r)
where cs = toColumns pq
m = rows pq
n = cols pq
mn = min m n
r = fromColumns $ zipWith zt ([m-1, m-2 .. 1] ++ repeat 0) cs
vs = zipWith zh [1..mn] cs
hs = zipWith haussholder (toList tau) vs
q = foldl1' mXm hs
unpackHess :: (Field t) => (Matrix t -> (Matrix t,Vector t)) -> Matrix t -> (Matrix t, Matrix t)
unpackHess hf m
| rows m == 1 = ((1><1)[1],m)
| otherwise = (uH . hf) m
uH (pq, tau) = (p,h)
where cs = toColumns pq
m = rows pq
n = cols pq
mn = min m n
h = fromColumns $ zipWith zt ([m-2, m-3 .. 1] ++ repeat 0) cs
vs = zipWith zh [2..mn] cs
hs = zipWith haussholder (toList tau) vs
p = foldl1' mXm hs
--------------------------------------------------------------------------
-- | Reciprocal of the 2-norm condition number of a matrix, computed from the singular values.
rcond :: Field t => Matrix t -> Double
rcond m = last s / head s
where s = toList (singularValues m)
-- | Number of linearly independent rows or columns. See also 'ranksv'
rank :: Field t => Matrix t -> Int
rank m = rankSVD eps m (singularValues m)
{-
expm' m = case diagonalize (complex m) of
Just (l,v) -> v `mXm` diag (exp l) `mXm` inv v
Nothing -> error "Sorry, expm not yet implemented for non-diagonalizable matrices"
where exp = vectorMapC Exp
-}
diagonalize m = if rank v == n
then Just (l,v)
else Nothing
where n = rows m
(l,v) = if exactHermitian m
then let (l',v') = eigSH (trustSym m) in (real l', v')
else eig m
-- | Generic matrix functions for diagonalizable matrices. For instance:
--
-- @logm = matFunc log@
--
matFunc :: (Complex Double -> Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
matFunc f m = case diagonalize m of
Just (l,v) -> v `mXm` diag (mapVector f l) `mXm` inv v
Nothing -> error "Sorry, matFunc requires a diagonalizable matrix"
--------------------------------------------------------------
golubeps :: Integer -> Integer -> Double
golubeps p q = a * fromIntegral b / fromIntegral c where
a = 2^^(3-p-q)
b = fact p * fact q
c = fact (p+q) * fact (p+q+1)
fact n = product [1..n]
epslist :: [(Int,Double)]
epslist = [ (fromIntegral k, golubeps k k) | k <- [1..]]
geps delta = head [ k | (k,g) <- epslist, g<delta]
{- | Matrix exponential. It uses a direct translation of Algorithm 11.3.1 in Golub & Van Loan,
based on a scaled Pade approximation.
-}
expm :: Field t => Matrix t -> Matrix t
expm = expGolub
expGolub :: Field t => Matrix t -> Matrix t
expGolub m = iterate msq f !! j
where j = max 0 $ floor $ logBase 2 $ pnorm Infinity m
a = m */ fromIntegral ((2::Int)^j)
q = geps eps -- 7 steps
eye = ident (rows m)
work (k,c,x,n,d) = (k',c',x',n',d')
where k' = k+1
c' = c * fromIntegral (q-k+1) / fromIntegral ((2*q-k+1)*k)
x' = a <> x
n' = n |+| (c' .* x')
d' = d |+| (((-1)^k * c') .* x')
(_,_,_,nf,df) = iterate work (1,1,eye,eye,eye) !! q
f = linearSolve df nf
msq x = x <> x
(<>) = multiply
v */ x = scale (recip x) v
(.*) = scale
(|+|) = add
--------------------------------------------------------------
{- | Matrix square root. Currently it uses a simple iterative algorithm described in Wikipedia.
It only works with invertible matrices that have a real solution.
@m = (2><2) [4,9
,0,4] :: Matrix Double@
>>> sqrtm m
(2><2)
[ 2.0, 2.25
, 0.0, 2.0 ]
For diagonalizable matrices you can try 'matFunc' @sqrt@:
>>> matFunc sqrt ((2><2) [1,0,0,-1])
(2><2)
[ 1.0 :+ 0.0, 0.0 :+ 0.0
, 0.0 :+ 0.0, 0.0 :+ 1.0 ]
-}
sqrtm :: Field t => Matrix t -> Matrix t
sqrtm = sqrtmInv
sqrtmInv x = fst $ fixedPoint $ iterate f (x, ident (rows x))
where fixedPoint (a:b:rest) | pnorm PNorm1 (fst a |-| fst b) < peps = a
| otherwise = fixedPoint (b:rest)
fixedPoint _ = error "fixedpoint with impossible inputs"
f (y,z) = (0.5 .* (y |+| inv z),
0.5 .* (inv y |+| z))
(.*) = scale
(|+|) = add
(|-|) = sub
------------------------------------------------------------------
signlp r vals = foldl f 1 (zip [0..r-1] vals)
where f s (a,b) | a /= b = -s
| otherwise = s
fixPerm r vals = (fromColumns $ A.elems res, sign)
where
v = [0..r-1]
t = toColumns (ident r)
(res,sign) = foldl swap (A.listArray (0,r-1) t, 1) (zip v vals)
swap (arr,s) (a,b)
| a /= b = (arr A.// [(a, arr A.! b),(b,arr A.! a)],-s)
| otherwise = (arr,s)
fixPerm' :: [Int] -> Vector I
fixPerm' s = res $ mutable f s0
where
s0 = reshape 1 (range (length s))
res = flatten . fst
swap m i j = rowOper (SWAP i j AllCols) m
f :: (Num t, Element t) => (Int, Int) -> STMatrix s t -> ST s () -- needed because of TypeFamilies
f _ p = sequence_ $ zipWith (swap p) [0..] s
triang r c h v = (r><c) [el s t | s<-[0..r-1], t<-[0..c-1]]
where el p q = if q-p>=h then v else 1 - v
-- | Compute the explicit LU decomposition from the compact one obtained by 'luPacked'.
luFact :: Numeric t => LU t -> (Matrix t, Matrix t, Matrix t, t)
luFact (LU l_u perm)
| r <= c = (l ,u ,p, s)
| otherwise = (l',u',p, s)
where
r = rows l_u
c = cols l_u
tu = triang r c 0 1
tl = triang r c 0 0
l = takeColumns r (l_u |*| tl) |+| diagRect 0 (konst' 1 r) r r
u = l_u |*| tu
(p,s) = fixPerm r perm
l' = (l_u |*| tl) |+| diagRect 0 (konst' 1 c) r c
u' = takeRows c (l_u |*| tu)
(|+|) = add
(|*|) = mul
---------------------------------------------------------------------------
data NormType = Infinity | PNorm1 | PNorm2 | Frobenius
class (RealFloat (RealOf t)) => Normed c t where
pnorm :: NormType -> c t -> RealOf t
instance Normed Vector Double where
pnorm PNorm1 = norm1
pnorm PNorm2 = norm2
pnorm Infinity = normInf
pnorm Frobenius = norm2
instance Normed Vector (Complex Double) where
pnorm PNorm1 = norm1
pnorm PNorm2 = norm2
pnorm Infinity = normInf
pnorm Frobenius = pnorm PNorm2
instance Normed Vector Float where
pnorm PNorm1 = norm1
pnorm PNorm2 = norm2
pnorm Infinity = normInf
pnorm Frobenius = pnorm PNorm2
instance Normed Vector (Complex Float) where
pnorm PNorm1 = norm1
pnorm PNorm2 = norm2
pnorm Infinity = normInf
pnorm Frobenius = pnorm PNorm2
instance Normed Matrix Double where
pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns
pnorm PNorm2 = (@>0) . singularValues
pnorm Infinity = pnorm PNorm1 . trans
pnorm Frobenius = pnorm PNorm2 . flatten
instance Normed Matrix (Complex Double) where
pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns
pnorm PNorm2 = (@>0) . singularValues
pnorm Infinity = pnorm PNorm1 . trans
pnorm Frobenius = pnorm PNorm2 . flatten
instance Normed Matrix Float where
pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns
pnorm PNorm2 = realToFrac . (@>0) . singularValues . double
pnorm Infinity = pnorm PNorm1 . trans
pnorm Frobenius = pnorm PNorm2 . flatten
instance Normed Matrix (Complex Float) where
pnorm PNorm1 = maximum . map (pnorm PNorm1) . toColumns
pnorm PNorm2 = realToFrac . (@>0) . singularValues . double
pnorm Infinity = pnorm PNorm1 . trans
pnorm Frobenius = pnorm PNorm2 . flatten
-- | Approximate number of common digits in the maximum element.
relativeError' :: (Normed c t, Container c t) => c t -> c t -> Int
relativeError' x y = dig (norm (x `sub` y) / norm x)
where norm = pnorm Infinity
dig r = round $ -logBase 10 (realToFrac r :: Double)
relativeError :: Num a => (a -> Double) -> a -> a -> Double
relativeError norm a b = r
where
na = norm a
nb = norm b
nab = norm (a-b)
mx = max na nb
mn = min na nb
r = if mn < peps
then mx
else nab/mx
----------------------------------------------------------------------
-- | Generalized symmetric positive definite eigensystem Av = lBv,
-- for A and B symmetric, B positive definite.
geigSH :: Field t
=> Herm t -- ^ A
-> Herm t -- ^ B
-> (Vector Double, Matrix t)
geigSH (Herm a) (Herm b) = geigSH' a b
geigSH' :: Field t
=> Matrix t -- ^ A
-> Matrix t -- ^ B
-> (Vector Double, Matrix t)
geigSH' a b = (l,v')
where
u = cholSH b
iu = inv u
c = ctrans iu <> a <> iu
(l,v) = eigSH' c
v' = iu <> v
(<>) = mXm
--------------------------------------------------------------------------------
-- | A matrix that, by construction, it is known to be complex Hermitian or real symmetric.
--
-- It can be created using 'sym', 'mTm', or 'trustSym', and the matrix can be extracted using 'unSym'.
newtype Herm t = Herm (Matrix t) deriving Show
instance (NFData t, Numeric t) => NFData (Herm t)
where
rnf (Herm m) = rnf m
-- | Extract the general matrix from a 'Herm' structure, forgetting its symmetric or Hermitian property.
unSym :: Herm t -> Matrix t
unSym (Herm x) = x
-- | Compute the complex Hermitian or real symmetric part of a square matrix (@(x + tr x)/2@).
sym :: Field t => Matrix t -> Herm t
sym x = Herm (scale 0.5 (tr x `add` x))
-- | Compute the contraction @tr x <> x@ of a general matrix.
mTm :: Numeric t => Matrix t -> Herm t
mTm x = Herm (tr x `mXm` x)
instance Field t => Linear t Herm where
scale x (Herm m) = Herm (scale x m)
instance Field t => Additive (Herm t) where
add (Herm a) (Herm b) = Herm (a `add` b)
-- | At your own risk, declare that a matrix is complex Hermitian or real symmetric
-- for usage in 'chol', 'eigSH', etc. Only a triangular part of the matrix will be used.
trustSym :: Matrix t -> Herm t
trustSym x = (Herm x)
|