1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Internal.Container
-- Copyright : (c) Alberto Ruiz 2010-14
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- Basic numeric operations on 'Vector' and 'Matrix', including conversion routines.
--
-- The 'Container' class is used to define optimized generic functions which work
-- on 'Vector' and 'Matrix' with real or complex elements.
--
-- Some of these functions are also available in the instances of the standard
-- numeric Haskell classes provided by "Numeric.LinearAlgebra".
--
-----------------------------------------------------------------------------
module Internal.Container where
import Internal.Vector
import Internal.Matrix
import Internal.Element
import Internal.Numeric
import Internal.Algorithms(Field,linearSolveSVD,Herm,mTm)
------------------------------------------------------------------
{- | Creates a real vector containing a range of values:
>>> linspace 5 (-3,7::Double)
fromList [-3.0,-0.5,2.0,4.5,7.0]@
>>> linspace 5 (8,2+i) :: Vector (Complex Double)
fromList [8.0 :+ 0.0,6.5 :+ 0.25,5.0 :+ 0.5,3.5 :+ 0.75,2.0 :+ 1.0]
Logarithmic spacing can be defined as follows:
@logspace n (a,b) = 10 ** linspace n (a,b)@
-}
linspace :: (Fractional e, Container Vector e) => Int -> (e, e) -> Vector e
linspace 0 _ = fromList[]
linspace 1 (a,b) = fromList[(a+b)/2]
linspace n (a,b) = addConstant a $ scale s $ fromList $ map fromIntegral [0 .. n-1]
where s = (b-a)/fromIntegral (n-1)
--------------------------------------------------------------------------------
infixr 8 <.>
{- | An infix synonym for 'dot'
>>> vector [1,2,3,4] <.> vector [-2,0,1,1]
5.0
>>> let 𝑖 = 0:+1 :: C
>>> fromList [1+𝑖,1] <.> fromList [1,1+𝑖]
2.0 :+ 0.0
-}
(<.>) :: Numeric t => Vector t -> Vector t -> t
(<.>) = dot
{- | dense matrix-vector product
>>> let m = (2><3) [1..]
>>> m
(2><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0 ]
>>> let v = vector [10,20,30]
>>> m #> v
fromList [140.0,320.0]
-}
infixr 8 #>
(#>) :: Numeric t => Matrix t -> Vector t -> Vector t
(#>) = mXv
-- | dense matrix-vector product
app :: Numeric t => Matrix t -> Vector t -> Vector t
app = (#>)
infixl 8 <#
-- | dense vector-matrix product
(<#) :: Numeric t => Vector t -> Matrix t -> Vector t
(<#) = vXm
--------------------------------------------------------------------------------
class Mul a b c | a b -> c where
infixl 7 <>
-- | Matrix-matrix, matrix-vector, and vector-matrix products.
(<>) :: Product t => a t -> b t -> c t
instance Mul Matrix Matrix Matrix where
(<>) = mXm
instance Mul Matrix Vector Vector where
(<>) m v = flatten $ m <> asColumn v
instance Mul Vector Matrix Vector where
(<>) v m = flatten $ asRow v <> m
--------------------------------------------------------------------------------
{- | Least squares solution of a linear system, similar to the \\ operator of Matlab\/Octave (based on linearSolveSVD)
@
a = (3><2)
[ 1.0, 2.0
, 2.0, 4.0
, 2.0, -1.0 ]
@
@
v = vector [13.0,27.0,1.0]
@
>>> let x = a <\> v
>>> x
fromList [3.0799999999999996,5.159999999999999]
>>> a #> x
fromList [13.399999999999999,26.799999999999997,1.0]
It also admits multiple right-hand sides stored as columns in a matrix.
-}
infixl 7 <\>
(<\>) :: (LSDiv c, Field t) => Matrix t -> c t -> c t
(<\>) = linSolve
class LSDiv c
where
linSolve :: Field t => Matrix t -> c t -> c t
instance LSDiv Vector
where
linSolve m v = flatten (linearSolveSVD m (reshape 1 v))
instance LSDiv Matrix
where
linSolve = linearSolveSVD
--------------------------------------------------------------------------------
class Build d f c e | d -> c, c -> d, f -> e, f -> d, f -> c, c e -> f, d e -> f
where
-- |
-- >>> build 5 (**2) :: Vector Double
-- fromList [0.0,1.0,4.0,9.0,16.0]
--
-- Hilbert matrix of order N:
--
-- >>> let hilb n = build (n,n) (\i j -> 1/(i+j+1)) :: Matrix Double
-- >>> putStr . dispf 2 $ hilb 3
-- 3x3
-- 1.00 0.50 0.33
-- 0.50 0.33 0.25
-- 0.33 0.25 0.20
--
build :: d -> f -> c e
instance Container Vector e => Build Int (e -> e) Vector e
where
build = build'
instance Container Matrix e => Build (Int,Int) (e -> e -> e) Matrix e
where
build = build'
--------------------------------------------------------------------------------
-- @dot u v = 'udot' ('conj' u) v@
dot :: (Numeric t) => Vector t -> Vector t -> t
dot u v = udot (conj u) v
--------------------------------------------------------------------------------
optimiseMult :: Monoid (Matrix t) => [Matrix t] -> Matrix t
optimiseMult = mconcat
--------------------------------------------------------------------------------
{- | Compute mean vector and covariance matrix of the rows of a matrix.
>>> meanCov $ gaussianSample 666 1000 (fromList[4,5]) (diagl[2,3])
(fromList [4.010341078059521,5.0197204699640405],
(2><2)
[ 1.9862461923890056, -1.0127225830525157e-2
, -1.0127225830525157e-2, 3.0373954915729318 ])
-}
meanCov :: Matrix Double -> (Vector Double, Herm Double)
meanCov x = (med,cov) where
r = rows x
k = 1 / fromIntegral r
med = konst k r `vXm` x
meds = konst 1 r `outer` med
xc = x `sub` meds
cov = scale (recip (fromIntegral (r-1))) (mTm xc)
--------------------------------------------------------------------------------
sortVector :: (Ord t, Element t) => Vector t -> Vector t
sortVector = sortV
{- |
>>> m <- randn 4 10
>>> disp 2 m
4x10
-0.31 0.41 0.43 -0.19 -0.17 -0.23 -0.17 -1.04 -0.07 -1.24
0.26 0.19 0.14 0.83 -1.54 -0.09 0.37 -0.63 0.71 -0.50
-0.11 -0.10 -1.29 -1.40 -1.04 -0.89 -0.68 0.35 -1.46 1.86
1.04 -0.29 0.19 -0.75 -2.20 -0.01 1.06 0.11 -2.09 -1.58
>>> disp 2 $ m ?? (All, Pos $ sortIndex (m!1))
4x10
-0.17 -1.04 -1.24 -0.23 0.43 0.41 -0.31 -0.17 -0.07 -0.19
-1.54 -0.63 -0.50 -0.09 0.14 0.19 0.26 0.37 0.71 0.83
-1.04 0.35 1.86 -0.89 -1.29 -0.10 -0.11 -0.68 -1.46 -1.40
-2.20 0.11 -1.58 -0.01 0.19 -0.29 1.04 1.06 -2.09 -0.75
-}
sortIndex :: (Ord t, Element t) => Vector t -> Vector I
sortIndex = sortI
ccompare :: (Ord t, Container c t) => c t -> c t -> c I
ccompare = ccompare'
cselect :: (Container c t) => c I -> c t -> c t -> c t -> c t
cselect = cselect'
{- | Extract elements from positions given in matrices of rows and columns.
>>> r
(3><3)
[ 1, 1, 1
, 1, 2, 2
, 1, 2, 3 ]
>>> c
(3><3)
[ 0, 1, 5
, 2, 2, 1
, 4, 4, 1 ]
>>> m
(4><6)
[ 0, 1, 2, 3, 4, 5
, 6, 7, 8, 9, 10, 11
, 12, 13, 14, 15, 16, 17
, 18, 19, 20, 21, 22, 23 ]
>>> remap r c m
(3><3)
[ 6, 7, 11
, 8, 14, 13
, 10, 16, 19 ]
The indexes are autoconformable.
>>> c'
(3><1)
[ 1
, 2
, 4 ]
>>> remap r c' m
(3><3)
[ 7, 7, 7
, 8, 14, 14
, 10, 16, 22 ]
-}
remap :: Element t => Matrix I -> Matrix I -> Matrix t -> Matrix t
remap i j m
| minElement i >= 0 && maxElement i < fromIntegral (rows m) &&
minElement j >= 0 && maxElement j < fromIntegral (cols m) = remapM i' j' m
| otherwise = error $ "out of range index in remap"
where
[i',j'] = conformMs [i,j]
|