1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
-----------------------------------------------------------------------------
-- |
-- Module : Numeric.LinearAlgebra.LAPACK
-- Copyright : (c) Alberto Ruiz 2006-14
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-- Functional interface to selected LAPACK functions (<http://www.netlib.org/lapack>).
--
-----------------------------------------------------------------------------
module Internal.LAPACK where
import Internal.Devel
import Internal.Vector
import Internal.Matrix hiding ((#))
import Internal.Conversion
import Internal.Element
import Foreign.Ptr(nullPtr)
import Foreign.C.Types
import Control.Monad(when)
import System.IO.Unsafe(unsafePerformIO)
-----------------------------------------------------------------------------------
infixl 1 #
a # b = apply a b
{-# INLINE (#) #-}
-----------------------------------------------------------------------------------
type TMMM t = t ::> t ::> t ::> Ok
type F = Float
type Q = Complex Float
foreign import ccall unsafe "multiplyR" dgemmc :: CInt -> CInt -> TMMM R
foreign import ccall unsafe "multiplyC" zgemmc :: CInt -> CInt -> TMMM C
foreign import ccall unsafe "multiplyF" sgemmc :: CInt -> CInt -> TMMM F
foreign import ccall unsafe "multiplyQ" cgemmc :: CInt -> CInt -> TMMM Q
foreign import ccall unsafe "multiplyI" c_multiplyI :: I -> TMMM I
foreign import ccall unsafe "multiplyL" c_multiplyL :: Z -> TMMM Z
isT (rowOrder -> False) = 0
isT _ = 1
tt x@(rowOrder -> False) = x
tt x = trans x
multiplyAux f st a b = unsafePerformIO $ do
when (cols a /= rows b) $ error $ "inconsistent dimensions in matrix product "++
show (rows a,cols a) ++ " x " ++ show (rows b, cols b)
s <- createMatrix ColumnMajor (rows a) (cols b)
f (isT a) (isT b) # (tt a) # (tt b) # s #| st
return s
-- | Matrix product based on BLAS's /dgemm/.
multiplyR :: Matrix Double -> Matrix Double -> Matrix Double
multiplyR a b = {-# SCC "multiplyR" #-} multiplyAux dgemmc "dgemmc" a b
-- | Matrix product based on BLAS's /zgemm/.
multiplyC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
multiplyC a b = multiplyAux zgemmc "zgemmc" a b
-- | Matrix product based on BLAS's /sgemm/.
multiplyF :: Matrix Float -> Matrix Float -> Matrix Float
multiplyF a b = multiplyAux sgemmc "sgemmc" a b
-- | Matrix product based on BLAS's /cgemm/.
multiplyQ :: Matrix (Complex Float) -> Matrix (Complex Float) -> Matrix (Complex Float)
multiplyQ a b = multiplyAux cgemmc "cgemmc" a b
multiplyI :: I -> Matrix CInt -> Matrix CInt -> Matrix CInt
multiplyI m a b = unsafePerformIO $ do
when (cols a /= rows b) $ error $
"inconsistent dimensions in matrix product "++ shSize a ++ " x " ++ shSize b
s <- createMatrix ColumnMajor (rows a) (cols b)
c_multiplyI m # a # b # s #|"c_multiplyI"
return s
multiplyL :: Z -> Matrix Z -> Matrix Z -> Matrix Z
multiplyL m a b = unsafePerformIO $ do
when (cols a /= rows b) $ error $
"inconsistent dimensions in matrix product "++ shSize a ++ " x " ++ shSize b
s <- createMatrix ColumnMajor (rows a) (cols b)
c_multiplyL m # a # b # s #|"c_multiplyL"
return s
-----------------------------------------------------------------------------
type TSVD t = t ::> t ::> R :> t ::> Ok
foreign import ccall unsafe "svd_l_R" dgesvd :: TSVD R
foreign import ccall unsafe "svd_l_C" zgesvd :: TSVD C
foreign import ccall unsafe "svd_l_Rdd" dgesdd :: TSVD R
foreign import ccall unsafe "svd_l_Cdd" zgesdd :: TSVD C
-- | Full SVD of a real matrix using LAPACK's /dgesvd/.
svdR :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double)
svdR = svdAux dgesvd "svdR"
-- | Full SVD of a real matrix using LAPACK's /dgesdd/.
svdRd :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double)
svdRd = svdAux dgesdd "svdRdd"
-- | Full SVD of a complex matrix using LAPACK's /zgesvd/.
svdC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double, Matrix (Complex Double))
svdC = svdAux zgesvd "svdC"
-- | Full SVD of a complex matrix using LAPACK's /zgesdd/.
svdCd :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double, Matrix (Complex Double))
svdCd = svdAux zgesdd "svdCdd"
svdAux f st x = unsafePerformIO $ do
a <- copy ColumnMajor x
u <- createMatrix ColumnMajor r r
s <- createVector (min r c)
v <- createMatrix ColumnMajor c c
f # a # u # s # v #| st
return (u,s,v)
where
r = rows x
c = cols x
-- | Thin SVD of a real matrix, using LAPACK's /dgesvd/ with jobu == jobvt == \'S\'.
thinSVDR :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double)
thinSVDR = thinSVDAux dgesvd "thinSVDR"
-- | Thin SVD of a complex matrix, using LAPACK's /zgesvd/ with jobu == jobvt == \'S\'.
thinSVDC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double, Matrix (Complex Double))
thinSVDC = thinSVDAux zgesvd "thinSVDC"
-- | Thin SVD of a real matrix, using LAPACK's /dgesdd/ with jobz == \'S\'.
thinSVDRd :: Matrix Double -> (Matrix Double, Vector Double, Matrix Double)
thinSVDRd = thinSVDAux dgesdd "thinSVDRdd"
-- | Thin SVD of a complex matrix, using LAPACK's /zgesdd/ with jobz == \'S\'.
thinSVDCd :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double, Matrix (Complex Double))
thinSVDCd = thinSVDAux zgesdd "thinSVDCdd"
thinSVDAux f st x = unsafePerformIO $ do
a <- copy ColumnMajor x
u <- createMatrix ColumnMajor r q
s <- createVector q
v <- createMatrix ColumnMajor q c
f # a # u # s # v #| st
return (u,s,v)
where
r = rows x
c = cols x
q = min r c
-- | Singular values of a real matrix, using LAPACK's /dgesvd/ with jobu == jobvt == \'N\'.
svR :: Matrix Double -> Vector Double
svR = svAux dgesvd "svR"
-- | Singular values of a complex matrix, using LAPACK's /zgesvd/ with jobu == jobvt == \'N\'.
svC :: Matrix (Complex Double) -> Vector Double
svC = svAux zgesvd "svC"
-- | Singular values of a real matrix, using LAPACK's /dgesdd/ with jobz == \'N\'.
svRd :: Matrix Double -> Vector Double
svRd = svAux dgesdd "svRd"
-- | Singular values of a complex matrix, using LAPACK's /zgesdd/ with jobz == \'N\'.
svCd :: Matrix (Complex Double) -> Vector Double
svCd = svAux zgesdd "svCd"
svAux f st x = unsafePerformIO $ do
a <- copy ColumnMajor x
s <- createVector q
g # a # s #| st
return s
where
r = rows x
c = cols x
q = min r c
g ra ca xra xca pa nb pb = f ra ca xra xca pa 0 0 0 0 nullPtr nb pb 0 0 0 0 nullPtr
-- | Singular values and all right singular vectors of a real matrix, using LAPACK's /dgesvd/ with jobu == \'N\' and jobvt == \'A\'.
rightSVR :: Matrix Double -> (Vector Double, Matrix Double)
rightSVR = rightSVAux dgesvd "rightSVR"
-- | Singular values and all right singular vectors of a complex matrix, using LAPACK's /zgesvd/ with jobu == \'N\' and jobvt == \'A\'.
rightSVC :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double))
rightSVC = rightSVAux zgesvd "rightSVC"
rightSVAux f st x = unsafePerformIO $ do
a <- copy ColumnMajor x
s <- createVector q
v <- createMatrix ColumnMajor c c
g # a # s # v #| st
return (s,v)
where
r = rows x
c = cols x
q = min r c
g ra ca xra xca pa = f ra ca xra xca pa 0 0 0 0 nullPtr
-- | Singular values and all left singular vectors of a real matrix, using LAPACK's /dgesvd/ with jobu == \'A\' and jobvt == \'N\'.
leftSVR :: Matrix Double -> (Matrix Double, Vector Double)
leftSVR = leftSVAux dgesvd "leftSVR"
-- | Singular values and all left singular vectors of a complex matrix, using LAPACK's /zgesvd/ with jobu == \'A\' and jobvt == \'N\'.
leftSVC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector Double)
leftSVC = leftSVAux zgesvd "leftSVC"
leftSVAux f st x = unsafePerformIO $ do
a <- copy ColumnMajor x
u <- createMatrix ColumnMajor r r
s <- createVector q
g # a # u # s #| st
return (u,s)
where
r = rows x
c = cols x
q = min r c
g ra ca xra xca pa ru cu xru xcu pu nb pb = f ra ca xra xca pa ru cu xru xcu pu nb pb 0 0 0 0 nullPtr
-----------------------------------------------------------------------------
foreign import ccall unsafe "eig_l_R" dgeev :: R ::> R ::> C :> R ::> Ok
foreign import ccall unsafe "eig_l_C" zgeev :: C ::> C ::> C :> C ::> Ok
foreign import ccall unsafe "eig_l_S" dsyev :: CInt -> R :> R ::> Ok
foreign import ccall unsafe "eig_l_H" zheev :: CInt -> R :> C ::> Ok
eigAux f st m = unsafePerformIO $ do
a <- copy ColumnMajor m
l <- createVector r
v <- createMatrix ColumnMajor r r
g # a # l # v #| st
return (l,v)
where
r = rows m
g ra ca xra xca pa = f ra ca xra xca pa 0 0 0 0 nullPtr
-- | Eigenvalues and right eigenvectors of a general complex matrix, using LAPACK's /zgeev/.
-- The eigenvectors are the columns of v. The eigenvalues are not sorted.
eigC :: Matrix (Complex Double) -> (Vector (Complex Double), Matrix (Complex Double))
eigC = eigAux zgeev "eigC"
eigOnlyAux f st m = unsafePerformIO $ do
a <- copy ColumnMajor m
l <- createVector r
g # a # l #| st
return l
where
r = rows m
g ra ca xra xca pa nl pl = f ra ca xra xca pa 0 0 0 0 nullPtr nl pl 0 0 0 0 nullPtr
-- | Eigenvalues of a general complex matrix, using LAPACK's /zgeev/ with jobz == \'N\'.
-- The eigenvalues are not sorted.
eigOnlyC :: Matrix (Complex Double) -> Vector (Complex Double)
eigOnlyC = eigOnlyAux zgeev "eigOnlyC"
-- | Eigenvalues and right eigenvectors of a general real matrix, using LAPACK's /dgeev/.
-- The eigenvectors are the columns of v. The eigenvalues are not sorted.
eigR :: Matrix Double -> (Vector (Complex Double), Matrix (Complex Double))
eigR m = (s', v'')
where (s,v) = eigRaux m
s' = fixeig1 s
v' = toRows $ trans v
v'' = fromColumns $ fixeig (toList s') v'
eigRaux :: Matrix Double -> (Vector (Complex Double), Matrix Double)
eigRaux m = unsafePerformIO $ do
a <- copy ColumnMajor m
l <- createVector r
v <- createMatrix ColumnMajor r r
g # a # l # v #| "eigR"
return (l,v)
where
r = rows m
g ra ca xra xca pa = dgeev ra ca xra xca pa 0 0 0 0 nullPtr
fixeig1 s = toComplex' (subVector 0 r (asReal s), subVector r r (asReal s))
where r = dim s
fixeig [] _ = []
fixeig [_] [v] = [comp' v]
fixeig ((r1:+i1):(r2:+i2):r) (v1:v2:vs)
| r1 == r2 && i1 == (-i2) = toComplex' (v1,v2) : toComplex' (v1, mapVector negate v2) : fixeig r vs
| otherwise = comp' v1 : fixeig ((r2:+i2):r) (v2:vs)
fixeig _ _ = error "fixeig with impossible inputs"
-- | Eigenvalues of a general real matrix, using LAPACK's /dgeev/ with jobz == \'N\'.
-- The eigenvalues are not sorted.
eigOnlyR :: Matrix Double -> Vector (Complex Double)
eigOnlyR = fixeig1 . eigOnlyAux dgeev "eigOnlyR"
-----------------------------------------------------------------------------
eigSHAux f st m = unsafePerformIO $ do
l <- createVector r
v <- copy ColumnMajor m
f # l # v #| st
return (l,v)
where
r = rows m
-- | Eigenvalues and right eigenvectors of a symmetric real matrix, using LAPACK's /dsyev/.
-- The eigenvectors are the columns of v.
-- The eigenvalues are sorted in descending order (use 'eigS'' for ascending order).
eigS :: Matrix Double -> (Vector Double, Matrix Double)
eigS m = (s', fliprl v)
where (s,v) = eigS' m
s' = fromList . reverse . toList $ s
-- | 'eigS' in ascending order
eigS' :: Matrix Double -> (Vector Double, Matrix Double)
eigS' = eigSHAux (dsyev 1) "eigS'"
-- | Eigenvalues and right eigenvectors of a hermitian complex matrix, using LAPACK's /zheev/.
-- The eigenvectors are the columns of v.
-- The eigenvalues are sorted in descending order (use 'eigH'' for ascending order).
eigH :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double))
eigH m = (s', fliprl v)
where
(s,v) = eigH' m
s' = fromList . reverse . toList $ s
-- | 'eigH' in ascending order
eigH' :: Matrix (Complex Double) -> (Vector Double, Matrix (Complex Double))
eigH' = eigSHAux (zheev 1) "eigH'"
-- | Eigenvalues of a symmetric real matrix, using LAPACK's /dsyev/ with jobz == \'N\'.
-- The eigenvalues are sorted in descending order.
eigOnlyS :: Matrix Double -> Vector Double
eigOnlyS = vrev . fst. eigSHAux (dsyev 0) "eigS'"
-- | Eigenvalues of a hermitian complex matrix, using LAPACK's /zheev/ with jobz == \'N\'.
-- The eigenvalues are sorted in descending order.
eigOnlyH :: Matrix (Complex Double) -> Vector Double
eigOnlyH = vrev . fst. eigSHAux (zheev 0) "eigH'"
vrev = flatten . flipud . reshape 1
-----------------------------------------------------------------------------
foreign import ccall unsafe "linearSolveR_l" dgesv :: R ::> R ::> Ok
foreign import ccall unsafe "linearSolveC_l" zgesv :: C ::> C ::> Ok
linearSolveSQAux g f st a b
| n1==n2 && n1==r = unsafePerformIO . g $ do
a' <- copy ColumnMajor a
s <- copy ColumnMajor b
f # a' # s #| st
return s
| otherwise = error $ st ++ " of nonsquare matrix"
where
n1 = rows a
n2 = cols a
r = rows b
-- | Solve a real linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, based on LAPACK's /dgesv/. For underconstrained or overconstrained systems use 'linearSolveLSR' or 'linearSolveSVDR'. See also 'lusR'.
linearSolveR :: Matrix Double -> Matrix Double -> Matrix Double
linearSolveR a b = linearSolveSQAux id dgesv "linearSolveR" a b
mbLinearSolveR :: Matrix Double -> Matrix Double -> Maybe (Matrix Double)
mbLinearSolveR a b = linearSolveSQAux mbCatch dgesv "linearSolveR" a b
-- | Solve a complex linear system (for square coefficient matrix and several right-hand sides) using the LU decomposition, based on LAPACK's /zgesv/. For underconstrained or overconstrained systems use 'linearSolveLSC' or 'linearSolveSVDC'. See also 'lusC'.
linearSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
linearSolveC a b = linearSolveSQAux id zgesv "linearSolveC" a b
mbLinearSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Maybe (Matrix (Complex Double))
mbLinearSolveC a b = linearSolveSQAux mbCatch zgesv "linearSolveC" a b
--------------------------------------------------------------------------------
foreign import ccall unsafe "cholSolveR_l" dpotrs :: R ::> R ::> Ok
foreign import ccall unsafe "cholSolveC_l" zpotrs :: C ::> C ::> Ok
linearSolveSQAux2 g f st a b
| n1==n2 && n1==r = unsafePerformIO . g $ do
s <- copy ColumnMajor b
f # a # s #| st
return s
| otherwise = error $ st ++ " of nonsquare matrix"
where
n1 = rows a
n2 = cols a
r = rows b
-- | Solves a symmetric positive definite system of linear equations using a precomputed Cholesky factorization obtained by 'cholS'.
cholSolveR :: Matrix Double -> Matrix Double -> Matrix Double
cholSolveR a b = linearSolveSQAux2 id dpotrs "cholSolveR" (fmat a) b
-- | Solves a Hermitian positive definite system of linear equations using a precomputed Cholesky factorization obtained by 'cholH'.
cholSolveC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
cholSolveC a b = linearSolveSQAux2 id zpotrs "cholSolveC" (fmat a) b
-----------------------------------------------------------------------------------
foreign import ccall unsafe "linearSolveLSR_l" dgels :: R ::> R ::> Ok
foreign import ccall unsafe "linearSolveLSC_l" zgels :: C ::> C ::> Ok
foreign import ccall unsafe "linearSolveSVDR_l" dgelss :: Double -> R ::> R ::> Ok
foreign import ccall unsafe "linearSolveSVDC_l" zgelss :: Double -> C ::> C ::> Ok
linearSolveAux f st a b
| m == rows b = unsafePerformIO $ do
a' <- copy ColumnMajor a
r <- createMatrix ColumnMajor (max m n) nrhs
setRect 0 0 b r
f # a' # r #| st
return r
| otherwise = error $ "different number of rows in linearSolve ("++st++")"
where
m = rows a
n = cols a
nrhs = cols b
-- | Least squared error solution of an overconstrained real linear system, or the minimum norm solution of an underconstrained system, using LAPACK's /dgels/. For rank-deficient systems use 'linearSolveSVDR'.
linearSolveLSR :: Matrix Double -> Matrix Double -> Matrix Double
linearSolveLSR a b = subMatrix (0,0) (cols a, cols b) $
linearSolveAux dgels "linearSolverLSR" a b
-- | Least squared error solution of an overconstrained complex linear system, or the minimum norm solution of an underconstrained system, using LAPACK's /zgels/. For rank-deficient systems use 'linearSolveSVDC'.
linearSolveLSC :: Matrix (Complex Double) -> Matrix (Complex Double) -> Matrix (Complex Double)
linearSolveLSC a b = subMatrix (0,0) (cols a, cols b) $
linearSolveAux zgels "linearSolveLSC" a b
-- | Minimum norm solution of a general real linear least squares problem Ax=B using the SVD, based on LAPACK's /dgelss/. Admits rank-deficient systems but it is slower than 'linearSolveLSR'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used.
linearSolveSVDR :: Maybe Double -- ^ rcond
-> Matrix Double -- ^ coefficient matrix
-> Matrix Double -- ^ right hand sides (as columns)
-> Matrix Double -- ^ solution vectors (as columns)
linearSolveSVDR (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $
linearSolveAux (dgelss rcond) "linearSolveSVDR" a b
linearSolveSVDR Nothing a b = linearSolveSVDR (Just (-1)) a b
-- | Minimum norm solution of a general complex linear least squares problem Ax=B using the SVD, based on LAPACK's /zgelss/. Admits rank-deficient systems but it is slower than 'linearSolveLSC'. The effective rank of A is determined by treating as zero those singular valures which are less than rcond times the largest singular value. If rcond == Nothing machine precision is used.
linearSolveSVDC :: Maybe Double -- ^ rcond
-> Matrix (Complex Double) -- ^ coefficient matrix
-> Matrix (Complex Double) -- ^ right hand sides (as columns)
-> Matrix (Complex Double) -- ^ solution vectors (as columns)
linearSolveSVDC (Just rcond) a b = subMatrix (0,0) (cols a, cols b) $
linearSolveAux (zgelss rcond) "linearSolveSVDC" a b
linearSolveSVDC Nothing a b = linearSolveSVDC (Just (-1)) a b
-----------------------------------------------------------------------------------
foreign import ccall unsafe "chol_l_H" zpotrf :: C ::> Ok
foreign import ccall unsafe "chol_l_S" dpotrf :: R ::> Ok
cholAux f st a = do
r <- copy ColumnMajor a
f # r #| st
return r
-- | Cholesky factorization of a complex Hermitian positive definite matrix, using LAPACK's /zpotrf/.
cholH :: Matrix (Complex Double) -> Matrix (Complex Double)
cholH = unsafePerformIO . cholAux zpotrf "cholH"
-- | Cholesky factorization of a real symmetric positive definite matrix, using LAPACK's /dpotrf/.
cholS :: Matrix Double -> Matrix Double
cholS = unsafePerformIO . cholAux dpotrf "cholS"
-- | Cholesky factorization of a complex Hermitian positive definite matrix, using LAPACK's /zpotrf/ ('Maybe' version).
mbCholH :: Matrix (Complex Double) -> Maybe (Matrix (Complex Double))
mbCholH = unsafePerformIO . mbCatch . cholAux zpotrf "cholH"
-- | Cholesky factorization of a real symmetric positive definite matrix, using LAPACK's /dpotrf/ ('Maybe' version).
mbCholS :: Matrix Double -> Maybe (Matrix Double)
mbCholS = unsafePerformIO . mbCatch . cholAux dpotrf "cholS"
-----------------------------------------------------------------------------------
type TMVM t = t ::> t :> t ::> Ok
foreign import ccall unsafe "qr_l_R" dgeqr2 :: R :> R ::> Ok
foreign import ccall unsafe "qr_l_C" zgeqr2 :: C :> C ::> Ok
-- | QR factorization of a real matrix, using LAPACK's /dgeqr2/.
qrR :: Matrix Double -> (Matrix Double, Vector Double)
qrR = qrAux dgeqr2 "qrR"
-- | QR factorization of a complex matrix, using LAPACK's /zgeqr2/.
qrC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector (Complex Double))
qrC = qrAux zgeqr2 "qrC"
qrAux f st a = unsafePerformIO $ do
r <- copy ColumnMajor a
tau <- createVector mn
f # tau # r #| st
return (r,tau)
where
m = rows a
n = cols a
mn = min m n
foreign import ccall unsafe "c_dorgqr" dorgqr :: R :> R ::> Ok
foreign import ccall unsafe "c_zungqr" zungqr :: C :> C ::> Ok
-- | build rotation from reflectors
qrgrR :: Int -> (Matrix Double, Vector Double) -> Matrix Double
qrgrR = qrgrAux dorgqr "qrgrR"
-- | build rotation from reflectors
qrgrC :: Int -> (Matrix (Complex Double), Vector (Complex Double)) -> Matrix (Complex Double)
qrgrC = qrgrAux zungqr "qrgrC"
qrgrAux f st n (a, tau) = unsafePerformIO $ do
res <- copy ColumnMajor (subMatrix (0,0) (rows a,n) a)
f # (subVector 0 n tau') # res #| st
return res
where
tau' = vjoin [tau, constantD 0 n]
-----------------------------------------------------------------------------------
foreign import ccall unsafe "hess_l_R" dgehrd :: R :> R ::> Ok
foreign import ccall unsafe "hess_l_C" zgehrd :: C :> C ::> Ok
-- | Hessenberg factorization of a square real matrix, using LAPACK's /dgehrd/.
hessR :: Matrix Double -> (Matrix Double, Vector Double)
hessR = hessAux dgehrd "hessR"
-- | Hessenberg factorization of a square complex matrix, using LAPACK's /zgehrd/.
hessC :: Matrix (Complex Double) -> (Matrix (Complex Double), Vector (Complex Double))
hessC = hessAux zgehrd "hessC"
hessAux f st a = unsafePerformIO $ do
r <- copy ColumnMajor a
tau <- createVector (mn-1)
f # tau # r #| st
return (r,tau)
where
m = rows a
n = cols a
mn = min m n
-----------------------------------------------------------------------------------
foreign import ccall unsafe "schur_l_R" dgees :: R ::> R ::> Ok
foreign import ccall unsafe "schur_l_C" zgees :: C ::> C ::> Ok
-- | Schur factorization of a square real matrix, using LAPACK's /dgees/.
schurR :: Matrix Double -> (Matrix Double, Matrix Double)
schurR = schurAux dgees "schurR"
-- | Schur factorization of a square complex matrix, using LAPACK's /zgees/.
schurC :: Matrix (Complex Double) -> (Matrix (Complex Double), Matrix (Complex Double))
schurC = schurAux zgees "schurC"
schurAux f st a = unsafePerformIO $ do
u <- createMatrix ColumnMajor n n
s <- copy ColumnMajor a
f # u # s #| st
return (u,s)
where
n = rows a
-----------------------------------------------------------------------------------
foreign import ccall unsafe "lu_l_R" dgetrf :: R :> R ::> Ok
foreign import ccall unsafe "lu_l_C" zgetrf :: R :> C ::> Ok
-- | LU factorization of a general real matrix, using LAPACK's /dgetrf/.
luR :: Matrix Double -> (Matrix Double, [Int])
luR = luAux dgetrf "luR"
-- | LU factorization of a general complex matrix, using LAPACK's /zgetrf/.
luC :: Matrix (Complex Double) -> (Matrix (Complex Double), [Int])
luC = luAux zgetrf "luC"
luAux f st a = unsafePerformIO $ do
lu <- copy ColumnMajor a
piv <- createVector (min n m)
f # piv # lu #| st
return (lu, map (pred.round) (toList piv))
where
n = rows a
m = cols a
-----------------------------------------------------------------------------------
foreign import ccall unsafe "luS_l_R" dgetrs :: R ::> R :> R ::> Ok
foreign import ccall unsafe "luS_l_C" zgetrs :: C ::> R :> C ::> Ok
-- | Solve a real linear system from a precomputed LU decomposition ('luR'), using LAPACK's /dgetrs/.
lusR :: Matrix Double -> [Int] -> Matrix Double -> Matrix Double
lusR a piv b = lusAux dgetrs "lusR" (fmat a) piv b
-- | Solve a complex linear system from a precomputed LU decomposition ('luC'), using LAPACK's /zgetrs/.
lusC :: Matrix (Complex Double) -> [Int] -> Matrix (Complex Double) -> Matrix (Complex Double)
lusC a piv b = lusAux zgetrs "lusC" (fmat a) piv b
lusAux f st a piv b
| n1==n2 && n2==n =unsafePerformIO $ do
x <- copy ColumnMajor b
f # a # piv' # x #| st
return x
| otherwise = error st
where
n1 = rows a
n2 = cols a
n = rows b
piv' = fromList (map (fromIntegral.succ) piv) :: Vector Double
-----------------------------------------------------------------------------------
foreign import ccall unsafe "ldl_R" dsytrf :: R :> R ::> Ok
foreign import ccall unsafe "ldl_C" zhetrf :: R :> C ::> Ok
-- | LDL factorization of a symmetric real matrix, using LAPACK's /dsytrf/.
ldlR :: Matrix Double -> (Matrix Double, [Int])
ldlR = ldlAux dsytrf "ldlR"
-- | LDL factorization of a hermitian complex matrix, using LAPACK's /zhetrf/.
ldlC :: Matrix (Complex Double) -> (Matrix (Complex Double), [Int])
ldlC = ldlAux zhetrf "ldlC"
ldlAux f st a = unsafePerformIO $ do
ldl <- copy ColumnMajor a
piv <- createVector (rows a)
f # piv # ldl #| st
return (ldl, map (pred.round) (toList piv))
-----------------------------------------------------------------------------------
foreign import ccall unsafe "ldl_S_R" dsytrs :: R ::> R :> R ::> Ok
foreign import ccall unsafe "ldl_S_C" zsytrs :: C ::> R :> C ::> Ok
-- | Solve a real linear system from a precomputed LDL decomposition ('ldlR'), using LAPACK's /dsytrs/.
ldlsR :: Matrix Double -> [Int] -> Matrix Double -> Matrix Double
ldlsR a piv b = lusAux dsytrs "ldlsR" (fmat a) piv b
-- | Solve a complex linear system from a precomputed LDL decomposition ('ldlC'), using LAPACK's /zsytrs/.
ldlsC :: Matrix (Complex Double) -> [Int] -> Matrix (Complex Double) -> Matrix (Complex Double)
ldlsC a piv b = lusAux zsytrs "ldlsC" (fmat a) piv b
|