summaryrefslogtreecommitdiff
path: root/packages/base/src/Internal/Matrix.hs
blob: 04092f9e6a03180492e2cc86f47136bc6dcbe1dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
{-# LANGUAGE ForeignFunctionInterface #-}
{-# LANGUAGE FlexibleContexts         #-}
{-# LANGUAGE FlexibleInstances        #-}
{-# LANGUAGE BangPatterns             #-}
{-# LANGUAGE CPP                      #-}
{-# LANGUAGE TypeOperators            #-}
{-# LANGUAGE TypeFamilies             #-}
{-# LANGUAGE ViewPatterns             #-}
{-# LANGUAGE DeriveGeneric            #-}
{-# LANGUAGE ConstrainedClassMethods  #-}

-- |
-- Module      :  Internal.Matrix
-- Copyright   :  (c) Alberto Ruiz 2007-15
-- License     :  BSD3
-- Maintainer  :  Alberto Ruiz
-- Stability   :  provisional
--
-- Internal matrix representation
--

module Internal.Matrix where

import Internal.Vector
import Internal.Devel
import Internal.Extract
import Internal.Vectorized hiding ((#), (#!))
import Foreign.Marshal.Alloc ( free )
import Foreign.Marshal.Array(newArray)
import Foreign.Ptr ( Ptr )
import Foreign.Storable ( Storable )
import Data.Complex ( Complex )
import Data.Int
import Foreign.C.Types ( CInt(..) )
import Foreign.C.String ( CString, newCString )
import System.IO.Unsafe ( unsafePerformIO )
import Control.DeepSeq ( NFData(..) )
import Text.Printf

-----------------------------------------------------------------

data MatrixOrder = RowMajor | ColumnMajor deriving (Show,Eq)

-- | Matrix representation suitable for BLAS\/LAPACK computations.

data Matrix t = Matrix
    { irows :: {-# UNPACK #-} !Int
    , icols :: {-# UNPACK #-} !Int
    , xRow  :: {-# UNPACK #-} !Int
    , xCol  :: {-# UNPACK #-} !Int
    , xdat  :: {-# UNPACK #-} !(Vector t)
    }


rows :: Matrix t -> Int
rows = irows
{-# INLINE rows #-}

cols :: Matrix t -> Int
cols = icols
{-# INLINE cols #-}

size :: Matrix t -> (Int, Int)
size m = (irows m, icols m)
{-# INLINE size #-}

-- | True if the matrix is in RowMajor form.
rowOrder :: Matrix t -> Bool
rowOrder m = xCol m == 1 || cols m == 1
{-# INLINE rowOrder #-}

-- | True if the matrix is in ColMajor form or if their is only one row.
colOrder :: Matrix t -> Bool
colOrder m = xRow m == 1 || rows m == 1
{-# INLINE colOrder #-}

-- | True if the matrix is a single row or column vector.
is1d :: Matrix t -> Bool
is1d (size->(r,c)) = r==1 || c==1
{-# INLINE is1d #-}

-- | True if the matrix is not contiguous.  This usually
-- means it is a slice of some larger matrix.
isSlice :: Storable t => Matrix t -> Bool
isSlice m@(size->(r,c)) = r*c < dim (xdat m)
{-# INLINE isSlice #-}

orderOf :: Matrix t -> MatrixOrder
orderOf m = if rowOrder m then RowMajor else ColumnMajor


showInternal :: Storable t => Matrix t -> IO ()
showInternal m = printf "%dx%d %s %s %d:%d (%d)\n" r c slc ord xr xc dv
  where
    r  = rows m
    c  = cols m
    xr = xRow m
    xc = xCol m
    slc = if isSlice m then "slice" else "full"
    ord = if is1d m then "1d" else if rowOrder m then "rows" else "cols"
    dv = dim (xdat m)

--------------------------------------------------------------------------------

-- | O(1) Matrix transpose.  This is only a logical transposition that does not
-- re-order the element storage.  If the storage order is important, use 'cmat'
-- or 'fmat'.
trans :: Matrix t -> Matrix t
trans m@Matrix { irows = r, icols = c, xRow = xr, xCol = xc } =
             m { irows = c, icols = r, xRow = xc, xCol = xr }


-- | Obtain the RowMajor equivalent of a given Matrix.
cmat :: (Storable t) => Matrix t -> Matrix t
cmat m
    | rowOrder m = m
    | otherwise  = extractAll RowMajor m


-- | Obtain the ColumnMajor equivalent of a given Matrix.
fmat :: (Storable t) => Matrix t -> Matrix t
fmat m
    | colOrder m = m
    | otherwise  = extractAll ColumnMajor m


-- C-Haskell matrix adapters
{-# INLINE amatr #-}
amatr :: Storable a => Matrix a -> (f -> IO r) -> (Int32 -> Int32 -> Ptr a -> f) -> IO r
amatr x f g = unsafeWith (xdat x) (f . g r c)
  where
    r  = fi (rows x)
    c  = fi (cols x)

{-# INLINE amat #-}
amat :: Storable a => Matrix a -> (f -> IO r) -> (Int32 -> Int32 -> Int32 -> Int32 -> Ptr a -> f) -> IO r
amat x f g = unsafeWith (xdat x) (f . g r c sr sc)
  where
    r  = fi (rows x)
    c  = fi (cols x)
    sr = fi (xRow x)
    sc = fi (xCol x)


instance Storable t => TransArray (Matrix t)
  where
    type TransRaw (Matrix t) b = Int32 -> Int32 -> Ptr t -> b
    type Trans (Matrix t) b    = Int32 -> Int32 -> Int32 -> Int32 -> Ptr t -> b
    apply = amat
    {-# INLINE apply #-}
    applyRaw = amatr
    {-# INLINE applyRaw #-}

infixr 1 #
(#) :: TransArray c => c -> (b -> IO r) -> Trans c b -> IO r
a # b = apply a b
{-# INLINE (#) #-}

(#!) :: (TransArray c, TransArray c1) => c1 -> c -> Trans c1 (Trans c (IO r)) -> IO r
a #! b = a # b # id
{-# INLINE (#!) #-}

--------------------------------------------------------------------------------

copy :: Storable t => MatrixOrder -> Matrix t -> IO (Matrix t)
copy ord m = extractAux ord m 0 (idxs[0,rows m-1]) 0 (idxs[0,cols m-1])

extractAll :: Storable t => MatrixOrder -> Matrix t -> Matrix t
extractAll ord m = unsafePerformIO (copy ord m)

{- | Creates a vector by concatenation of rows. If the matrix is ColumnMajor, this operation requires a transpose.

>>> flatten (ident 3)
[1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0]
it :: (Num t, Element t) => Vector t

-}
flatten :: Storable t => Matrix t -> Vector t
flatten m
    | isSlice m || not (rowOrder m) = xdat (extractAll RowMajor m)
    | otherwise                     = xdat m


-- | the inverse of 'Data.Packed.Matrix.fromLists'
toLists :: (Storable t) => Matrix t -> [[t]]
toLists = map toList . toRows



-- | common value with \"adaptable\" 1
compatdim :: [Int] -> Maybe Int
compatdim [] = Nothing
compatdim [a] = Just a
compatdim (a:b:xs)
    | a==b = compatdim (b:xs)
    | a==1 = compatdim (b:xs)
    | b==1 = compatdim (a:xs)
    | otherwise = Nothing




-- | Create a matrix from a list of vectors.
-- All vectors must have the same dimension,
-- or dimension 1, which is are automatically expanded.
fromRows :: Storable t => [Vector t] -> Matrix t
fromRows [] = emptyM 0 0
fromRows vs = case compatdim (map dim vs) of
    Nothing -> error $ "fromRows expects vectors with equal sizes (or singletons), given: " ++ show (map dim vs)
    Just 0  -> emptyM r 0
    Just c  -> matrixFromVector RowMajor r c . vjoin . map (adapt c) $ vs
  where
    r = length vs
    adapt c v
        | c == 0 = fromList[]
        | dim v == c = v
        | otherwise = constantAux (v@>0) c

-- | extracts the rows of a matrix as a list of vectors
toRows :: Storable t => Matrix t -> [Vector t]
toRows m
    | rowOrder m = map sub rowRange
    | otherwise  = map ext rowRange
  where
    rowRange = [0..rows m-1]
    sub k = subVector (k*xRow m) (cols m) (xdat m)
    ext k = xdat $ unsafePerformIO $ extractAux RowMajor m 1 (idxs[k]) 0 (idxs[0,cols m-1])


-- | Creates a matrix from a list of vectors, as columns
fromColumns :: Storable t => [Vector t] -> Matrix t
fromColumns m = trans . fromRows $ m

-- | Creates a list of vectors from the columns of a matrix
toColumns :: Storable t => Matrix t -> [Vector t]
toColumns m = toRows . trans $ m

-- | Reads a matrix position.
(@@>) :: Storable t => Matrix t -> (Int,Int) -> t
infixl 9 @@>
m@Matrix {irows = r, icols = c} @@> (i,j)
    | i<0 || i>=r || j<0 || j>=c = error "matrix indexing out of range"
    | otherwise = atM' m i j
{-# INLINE (@@>) #-}

--  Unsafe matrix access without range checking
atM' :: Storable t => Matrix t -> Int -> Int -> t
atM' m i j = xdat m `at'` (i * (xRow m) + j * (xCol m))
{-# INLINE atM' #-}

------------------------------------------------------------------

matrixFromVector :: Storable t => MatrixOrder -> Int -> Int -> Vector t -> Matrix t
matrixFromVector _ 1 _ v@(dim->d) = Matrix { irows = 1, icols = d, xdat = v, xRow = d, xCol = 1 }
matrixFromVector _ _ 1 v@(dim->d) = Matrix { irows = d, icols = 1, xdat = v, xRow = 1, xCol = d }
matrixFromVector o r c v
    | r * c == dim v = m
    | otherwise = error $ "can't reshape vector dim = "++ show (dim v)++" to matrix " ++ shSize m
  where
    m | o == RowMajor = Matrix { irows = r, icols = c, xdat = v, xRow = c, xCol = 1 }
      | otherwise     = Matrix { irows = r, icols = c, xdat = v, xRow = 1, xCol = r }

-- allocates memory for a new matrix
createMatrix :: (Storable a) => MatrixOrder -> Int -> Int -> IO (Matrix a)
createMatrix ord r c = do
    p <- createVector (r*c)
    return (matrixFromVector ord r c p)

{- | Creates a matrix from a vector by grouping the elements in rows with the desired number of columns. (GNU-Octave groups by columns. To do it you can define @reshapeF r = tr' . reshape r@
where r is the desired number of rows.)

>>> reshape 4 (fromList [1..12])
(3><4)
 [ 1.0,  2.0,  3.0,  4.0
 , 5.0,  6.0,  7.0,  8.0
 , 9.0, 10.0, 11.0, 12.0 ]

-}
reshape :: Storable t => Int -> Vector t -> Matrix t
reshape 0 v = matrixFromVector RowMajor 0 0 v
reshape c v = matrixFromVector RowMajor (dim v `div` c) c v


-- | application of a vector function on the flattened matrix elements
liftMatrix :: (Storable a, Storable b) => (Vector a -> Vector b) -> Matrix a -> Matrix b
liftMatrix f m@Matrix { irows = r, icols = c, xdat = d}
    | isSlice m = matrixFromVector RowMajor r c (f (flatten m))
    | otherwise = matrixFromVector (orderOf m) r c (f d)

-- | application of a vector function on the flattened matrices elements
liftMatrix2 :: (Storable t, Storable a, Storable b) => (Vector a -> Vector b -> Vector t) -> Matrix a -> Matrix b -> Matrix t
liftMatrix2 f m1@(size->(r,c)) m2
    | (r,c)/=size m2 = error "nonconformant matrices in liftMatrix2"
    | rowOrder m1 = matrixFromVector RowMajor    r c (f (flatten m1) (flatten m2))
    | otherwise   = matrixFromVector ColumnMajor r c (f (flatten (trans m1)) (flatten (trans m2)))

------------------------------------------------------------------

-- | reference to a rectangular slice of a matrix (no data copy)
subMatrix :: Storable a
            => (Int,Int) -- ^ (r0,c0) starting position
            -> (Int,Int) -- ^ (rt,ct) dimensions of submatrix
            -> Matrix a -- ^ input matrix
            -> Matrix a -- ^ result
subMatrix (r0,c0) (rt,ct) m
    | rt <= 0 || ct <= 0 = matrixFromVector RowMajor (max 0 rt) (max 0 ct) (fromList [])
    | 0 <= r0 && 0 <= rt && r0+rt <= rows m &&
      0 <= c0 && 0 <= ct && c0+ct <= cols m = res
    | otherwise = error $ "wrong subMatrix "++show ((r0,c0),(rt,ct))++" of "++shSize m
  where
    p = r0 * xRow m + c0 * xCol m
    tot | rowOrder m = ct + (rt-1) * xRow m
        | otherwise  = rt + (ct-1) * xCol m
    res = m { irows = rt, icols = ct, xdat = subVector p tot (xdat m) }

--------------------------------------------------------------------------

maxZ :: (Num t1, Ord t1, Foldable t) => t t1 -> t1
maxZ xs = if minimum xs == 0 then 0 else maximum xs

conformMs :: Storable t => [Matrix t] -> [Matrix t]
conformMs ms = map (conformMTo (r,c)) ms
  where
    r = maxZ (map rows ms)
    c = maxZ (map cols ms)

conformVs :: Storable t => [Vector t] -> [Vector t]
conformVs vs = map (conformVTo n) vs
  where
    n = maxZ (map dim vs)

conformMTo :: Storable t => (Int, Int) -> Matrix t -> Matrix t
conformMTo (r,c) m
    | size m == (r,c) = m
    | size m == (1,1) = matrixFromVector RowMajor r c (constantAux (m@@>(0,0)) (r*c))
    | size m == (r,1) = repCols c m
    | size m == (1,c) = repRows r m
    | otherwise = error $ "matrix " ++ shSize m ++ " cannot be expanded to " ++ shDim (r,c)

conformVTo :: Storable t => Int -> Vector t -> Vector t
conformVTo n v
    | dim v == n = v
    | dim v == 1 = constantAux (v@>0) n
    | otherwise = error $ "vector of dim=" ++ show (dim v) ++ " cannot be expanded to dim=" ++ show n

repRows :: Storable t => Int -> Matrix t -> Matrix t
repRows n x = fromRows (replicate n (flatten x))
repCols :: Storable t => Int -> Matrix t -> Matrix t
repCols n x = fromColumns (replicate n (flatten x))

shSize :: Matrix t -> [Char]
shSize = shDim . size

shDim :: (Show a, Show a1) => (a1, a) -> [Char]
shDim (r,c) = "(" ++ show r ++"x"++ show c ++")"

emptyM :: Storable t => Int -> Int -> Matrix t
emptyM r c = matrixFromVector RowMajor r c (fromList[])

----------------------------------------------------------------------

instance (Storable t, NFData t) => NFData (Matrix t)
  where
    rnf m | d > 0     = rnf (v @> 0)
          | otherwise = ()
      where
        d = dim v
        v = xdat m

---------------------------------------------------------------

{-
extractAux :: (Eq t3, Eq t2, TransArray c, Storable a, Storable t1,
                Storable t, Num t3, Num t2, Integral t1, Integral t)
           => (t3 -> t2 -> CInt -> Ptr t1 -> CInt -> Ptr t -> Trans c (CInt -> CInt -> CInt -> CInt -> Ptr a -> IO CInt)) -- f
           -> MatrixOrder -- ord
           -> c -- m
           -> t3 -- moder
           -> Vector t1 -- vr
           -> t2 -- modec
           -> Vector t -- vc
           -> IO (Matrix a)
-}

extractAux :: Storable a =>
                    MatrixOrder
                    -> Matrix a
                    -> Int32
                    -> Vector Int32
                    -> Int32
                    -> Vector Int32
                    -> IO (Matrix a)
extractAux ord m moder vr modec vc = do
    let nr = if moder == 0 then fromIntegral $ vr@>1 - vr@>0 + 1 else dim vr
        nc = if modec == 0 then fromIntegral $ vc@>1 - vc@>0 + 1 else dim vc
    r <- createMatrix ord nr nc
    (vr # vc # m #! r) (extractStorable moder modec)  #|"extract"

    return r

{-
type Extr x = Int32 -> Int32 -> CIdxs (CIdxs (OM x (OM x (IO Int32))))

foreign import ccall unsafe "extractD" c_extractD :: Extr Double
foreign import ccall unsafe "extractF" c_extractF :: Extr Float
foreign import ccall unsafe "extractC" c_extractC :: Extr (Complex Double)
foreign import ccall unsafe "extractQ" c_extractQ :: Extr (Complex Float)
foreign import ccall unsafe "extractI" c_extractI :: Extr Int32
foreign import ccall unsafe "extractL" c_extractL :: Extr Z
-}

---------------------------------------------------------------

setRectAux :: (TransArray c1, TransArray c)
           => (Int32 -> Int32 -> Trans c1 (Trans c (IO Int32)))
           -> Int -> Int -> c1 -> c -> IO ()
setRectAux f i j m r = (m #! r) (f (fi i) (fi j)) #|"setRect"

type SetRect x = I -> I -> x ::> x::> Ok

foreign import ccall unsafe "setRectD" c_setRectD :: SetRect Double
foreign import ccall unsafe "setRectF" c_setRectF :: SetRect Float
foreign import ccall unsafe "setRectC" c_setRectC :: SetRect (Complex Double)
foreign import ccall unsafe "setRectQ" c_setRectQ :: SetRect (Complex Float)
foreign import ccall unsafe "setRectI" c_setRectI :: SetRect I
foreign import ccall unsafe "setRectL" c_setRectL :: SetRect Z

--------------------------------------------------------------------------------

sortG :: (Storable t, Storable a)
      => (Int32 -> Ptr t -> Int32 -> Ptr a -> IO Int32) -> Vector t -> Vector a
sortG f v = unsafePerformIO $ do
    r <- createVector (dim v)
    (v #! r) f #|"sortG"
    return r

sortIdxD :: Vector Double -> Vector Int32
sortIdxD = sortG c_sort_indexD
sortIdxF :: Vector Float -> Vector Int32
sortIdxF = sortG c_sort_indexF
sortIdxI :: Vector Int32 -> Vector Int32
sortIdxI = sortG c_sort_indexI
sortIdxL :: Vector Z -> Vector I
sortIdxL = sortG c_sort_indexL

sortValD :: Vector Double -> Vector Double
sortValD = sortG c_sort_valD
sortValF :: Vector Float -> Vector Float
sortValF = sortG c_sort_valF
sortValI :: Vector Int32 -> Vector Int32
sortValI = sortG c_sort_valI
sortValL :: Vector Z -> Vector Z
sortValL = sortG c_sort_valL

foreign import ccall unsafe "sort_indexD" c_sort_indexD :: CV Double (CV Int32 (IO Int32))
foreign import ccall unsafe "sort_indexF" c_sort_indexF :: CV Float  (CV Int32 (IO Int32))
foreign import ccall unsafe "sort_indexI" c_sort_indexI :: CV Int32   (CV Int32 (IO Int32))
foreign import ccall unsafe "sort_indexL" c_sort_indexL :: Z :> I :> Ok

foreign import ccall unsafe "sort_valuesD" c_sort_valD :: CV Double (CV Double (IO Int32))
foreign import ccall unsafe "sort_valuesF" c_sort_valF :: CV Float  (CV Float (IO Int32))
foreign import ccall unsafe "sort_valuesI" c_sort_valI :: CV Int32   (CV Int32 (IO Int32))
foreign import ccall unsafe "sort_valuesL" c_sort_valL :: Z :> Z :> Ok

--------------------------------------------------------------------------------

compareG :: (TransArray c, Storable t, Storable a)
         => Trans c (Int32 -> Ptr t -> Int32 -> Ptr a -> IO Int32)
         -> c -> Vector t -> Vector a
compareG f u v = unsafePerformIO $ do
    r <- createVector (dim v)
    (u # v #! r) f #|"compareG"
    return r

compareD :: Vector Double -> Vector Double -> Vector Int32
compareD = compareG c_compareD
compareF :: Vector Float -> Vector Float -> Vector Int32
compareF = compareG c_compareF
compareI :: Vector Int32 -> Vector Int32 -> Vector Int32
compareI = compareG c_compareI
compareL :: Vector Z -> Vector Z -> Vector Int32
compareL = compareG c_compareL

foreign import ccall unsafe "compareD" c_compareD :: CV Double (CV Double (CV Int32 (IO Int32)))
foreign import ccall unsafe "compareF" c_compareF :: CV Float (CV Float  (CV Int32 (IO Int32)))
foreign import ccall unsafe "compareI" c_compareI :: CV Int32 (CV Int32   (CV Int32 (IO Int32)))
foreign import ccall unsafe "compareL" c_compareL :: Z :> Z :> I :> Ok

--------------------------------------------------------------------------------

selectG :: (TransArray c, TransArray c1, TransArray c2, Storable t, Storable a)
        => Trans c2 (Trans c1 (Int32 -> Ptr t -> Trans c (Int32 -> Ptr a -> IO Int32)))
        -> c2 -> c1 -> Vector t -> c -> Vector a
selectG f c u v w = unsafePerformIO $ do
    r <- createVector (dim v)
    (c # u # v # w #! r) f #|"selectG"
    return r

selectD :: Vector Int32 -> Vector Double -> Vector Double -> Vector Double -> Vector Double
selectD = selectG c_selectD
selectF :: Vector Int32 -> Vector Float -> Vector Float -> Vector Float -> Vector Float
selectF = selectG c_selectF
selectI :: Vector Int32 -> Vector Int32 -> Vector Int32 -> Vector Int32 -> Vector Int32
selectI = selectG c_selectI
selectL :: Vector Int32 -> Vector Z -> Vector Z -> Vector Z -> Vector Z
selectL = selectG c_selectL
selectC :: Vector Int32
        -> Vector (Complex Double)
        -> Vector (Complex Double)
        -> Vector (Complex Double)
        -> Vector (Complex Double)
selectC = selectG c_selectC
selectQ :: Vector Int32
        -> Vector (Complex Float)
        -> Vector (Complex Float)
        -> Vector (Complex Float)
        -> Vector (Complex Float)
selectQ = selectG c_selectQ

type Sel x = CV Int32 (CV x (CV x (CV x (CV x (IO Int32)))))

foreign import ccall unsafe "chooseD" c_selectD :: Sel Double
foreign import ccall unsafe "chooseF" c_selectF :: Sel Float
foreign import ccall unsafe "chooseI" c_selectI :: Sel Int32
foreign import ccall unsafe "chooseC" c_selectC :: Sel (Complex Double)
foreign import ccall unsafe "chooseQ" c_selectQ :: Sel (Complex Float)
foreign import ccall unsafe "chooseL" c_selectL :: Sel Z

---------------------------------------------------------------------------

remapG :: (TransArray c, TransArray c1, Storable t, Storable a)
       => (Int32 -> Int32 -> Int32 -> Int32 -> Ptr t
                -> Trans c1 (Trans c (Int32 -> Int32 -> Int32 -> Int32 -> Ptr a -> IO Int32)))
       -> Matrix t -> c1 -> c -> Matrix a
remapG f i j m = unsafePerformIO $ do
    r <- createMatrix RowMajor (rows i) (cols i)
    (i # j # m #! r) f #|"remapG"
    return r

remapD :: Matrix Int32 -> Matrix Int32 -> Matrix Double -> Matrix Double
remapD = remapG c_remapD
remapF :: Matrix Int32 -> Matrix Int32 -> Matrix Float -> Matrix Float
remapF = remapG c_remapF
remapI :: Matrix Int32 -> Matrix Int32 -> Matrix Int32 -> Matrix Int32
remapI = remapG c_remapI
remapL :: Matrix Int32 -> Matrix Int32 -> Matrix Z -> Matrix Z
remapL = remapG c_remapL
remapC :: Matrix Int32
       -> Matrix Int32
       -> Matrix (Complex Double)
       -> Matrix (Complex Double)
remapC = remapG c_remapC
remapQ :: Matrix Int32 -> Matrix Int32 -> Matrix (Complex Float) -> Matrix (Complex Float)
remapQ = remapG c_remapQ

type Rem x = OM Int32 (OM Int32 (OM x (OM x (IO Int32))))

foreign import ccall unsafe "remapD" c_remapD :: Rem Double
foreign import ccall unsafe "remapF" c_remapF :: Rem Float
foreign import ccall unsafe "remapI" c_remapI :: Rem Int32
foreign import ccall unsafe "remapC" c_remapC :: Rem (Complex Double)
foreign import ccall unsafe "remapQ" c_remapQ :: Rem (Complex Float)
foreign import ccall unsafe "remapL" c_remapL :: Rem Z

--------------------------------------------------------------------------------

rowOpAux :: (TransArray c, Storable a) =>
            (Int32 -> Ptr a -> Int32 -> Int32 -> Int32 -> Int32 -> Trans c (IO Int32))
         -> Int -> a -> Int -> Int -> Int -> Int -> c -> IO ()
rowOpAux f c x i1 i2 j1 j2 m = do
    px <- newArray [x]
    (m # id) (f (fi c) px (fi i1) (fi i2) (fi j1) (fi j2)) #|"rowOp"
    free px

type RowOp x = Int32 -> Ptr x -> Int32 -> Int32 -> Int32 -> Int32 -> x ::> Ok

foreign import ccall unsafe "rowop_double"  c_rowOpD :: RowOp R
foreign import ccall unsafe "rowop_float"   c_rowOpF :: RowOp Float
foreign import ccall unsafe "rowop_TCD"     c_rowOpC :: RowOp C
foreign import ccall unsafe "rowop_TCF"     c_rowOpQ :: RowOp (Complex Float)
foreign import ccall unsafe "rowop_int32_t" c_rowOpI :: RowOp I
foreign import ccall unsafe "rowop_int64_t" c_rowOpL :: RowOp Z
foreign import ccall unsafe "rowop_mod_int32_t" c_rowOpMI :: I -> RowOp I
foreign import ccall unsafe "rowop_mod_int64_t" c_rowOpML :: Z -> RowOp Z

--------------------------------------------------------------------------------

gemmg :: (TransArray c1, TransArray c, TransArray c2, TransArray c3)
      => Trans c3 (Trans c2 (Trans c1 (Trans c (IO Int32))))
      -> c3 -> c2 -> c1 -> c -> IO ()
gemmg f v m1 m2 m3 = (v # m1 # m2 #! m3) f #|"gemmg"

type Tgemm x = x :> x ::> x ::> x ::> Ok

foreign import ccall unsafe "gemm_double"  c_gemmD :: Tgemm R
foreign import ccall unsafe "gemm_float"   c_gemmF :: Tgemm Float
foreign import ccall unsafe "gemm_TCD"     c_gemmC :: Tgemm C
foreign import ccall unsafe "gemm_TCF"     c_gemmQ :: Tgemm (Complex Float)
foreign import ccall unsafe "gemm_int32_t" c_gemmI :: Tgemm I
foreign import ccall unsafe "gemm_int64_t" c_gemmL :: Tgemm Z
foreign import ccall unsafe "gemm_mod_int32_t" c_gemmMI :: I -> Tgemm I
foreign import ccall unsafe "gemm_mod_int64_t" c_gemmML :: Z -> Tgemm Z

--------------------------------------------------------------------------------

{-
reorderAux :: (TransArray c, Storable t, Storable a1, Storable t1, Storable a) =>
              (Int32 -> Ptr a -> Int32 -> Ptr t1
                    -> Trans c (Int32 -> Ptr t -> Int32 -> Ptr a1 -> IO Int32))
           -> Vector t1 -> c -> Vector t -> Vector a1
-}
reorderAux :: (TransArray c, Storable a,
                 Trans c (Int32 -> Ptr a -> Int32 -> Ptr a -> IO Int32) ~ (Int32 -> ConstPtr Int32 -> Int32 -> ConstPtr a -> Int32 -> Ptr a -> IO Int32)) =>
              p -> Vector Int32 -> c -> Vector a -> Vector a
reorderAux f s d v = unsafePerformIO $ do
    k <- createVector (dim s)
    r <- createVector (dim v)
    (k # s # d # v #! r) reorderStorable #| "reorderV"
    return r

type Reorder x = CV Int32 (CV Int32 (CV Int32 (CV x (CV x (IO Int32)))))

foreign import ccall unsafe "reorderD" c_reorderD :: Reorder Double
foreign import ccall unsafe "reorderF" c_reorderF :: Reorder Float
foreign import ccall unsafe "reorderI" c_reorderI :: Reorder Int32
foreign import ccall unsafe "reorderC" c_reorderC :: Reorder (Complex Double)
foreign import ccall unsafe "reorderQ" c_reorderQ :: Reorder (Complex Float)
foreign import ccall unsafe "reorderL" c_reorderL :: Reorder Z

-- | Transpose an array with dimensions @dims@ by making a copy using @strides@. For example, for an array with 3 indices,
--   @(reorderVector strides dims v) ! ((i * dims ! 1 + j) * dims ! 2 + k) == v ! (i * strides ! 0 + j * strides ! 1 + k * strides ! 2)@
--   This function is intended to be used internally by tensor libraries.
reorderVector :: Storable a
                    => Vector Int32 -- ^ @strides@: array strides
                    -> Vector Int32 -- ^ @dims@: array dimensions of new array @v@
                    -> Vector a    -- ^ @v@: flattened input array
                    -> Vector a    -- ^ @v'@: flattened output array
reorderVector = reorderAux ()

--------------------------------------------------------------------------------

foreign import ccall unsafe "saveMatrix" c_saveMatrix
    :: CString -> CString -> Double ::> Ok

{- | save a matrix as a 2D ASCII table
-}
saveMatrix
    :: FilePath
    -> String        -- ^ \"printf\" format (e.g. \"%.2f\", \"%g\", etc.)
    -> Matrix Double
    -> IO ()
saveMatrix name format m = do
    cname   <- newCString name
    cformat <- newCString format
    (m # id) (c_saveMatrix cname cformat) #|"saveMatrix"
    free cname
    free cformat
    return ()

--------------------------------------------------------------------------------