1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Packed.Internal.Numeric
-- Copyright : (c) Alberto Ruiz 2010-14
-- License : BSD3
-- Maintainer : Alberto Ruiz
-- Stability : provisional
--
-----------------------------------------------------------------------------
module Internal.Numeric where
import Internal.Vector
import Internal.Matrix
import Internal.Element
import Internal.ST as ST
import Internal.Conversion
import Internal.Vectorized
import Internal.LAPACK(multiplyR,multiplyC,multiplyF,multiplyQ,multiplyI,multiplyL)
import Data.List.Split(chunksOf)
--------------------------------------------------------------------------------
type family IndexOf (c :: * -> *)
type instance IndexOf Vector = Int
type instance IndexOf Matrix = (Int,Int)
type family ArgOf (c :: * -> *) a
type instance ArgOf Vector a = a -> a
type instance ArgOf Matrix a = a -> a -> a
--------------------------------------------------------------------------------
-- | Basic element-by-element functions for numeric containers
class Element e => Container c e
where
conj' :: c e -> c e
size' :: c e -> IndexOf c
scalar' :: e -> c e
scale' :: e -> c e -> c e
addConstant :: e -> c e -> c e
add :: c e -> c e -> c e
sub :: c e -> c e -> c e
-- | element by element multiplication
mul :: c e -> c e -> c e
equal :: c e -> c e -> Bool
cmap' :: (Element b) => (e -> b) -> c e -> c b
konst' :: e -> IndexOf c -> c e
build' :: IndexOf c -> (ArgOf c e) -> c e
atIndex' :: c e -> IndexOf c -> e
minIndex' :: c e -> IndexOf c
maxIndex' :: c e -> IndexOf c
minElement' :: c e -> e
maxElement' :: c e -> e
sumElements' :: c e -> e
prodElements' :: c e -> e
step' :: Ord e => c e -> c e
ccompare' :: Ord e => c e -> c e -> c I
cselect' :: c I -> c e -> c e -> c e -> c e
find' :: (e -> Bool) -> c e -> [IndexOf c]
assoc' :: IndexOf c -- ^ size
-> e -- ^ default value
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
accum' :: c e -- ^ initial structure
-> (e -> e -> e) -- ^ update function
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
-- | scale the element by element reciprocal of the object:
--
-- @scaleRecip 2 (fromList [5,i]) == 2 |> [0.4 :+ 0.0,0.0 :+ (-2.0)]@
scaleRecip :: Fractional e => e -> c e -> c e
-- | element by element division
divide :: Fractional e => c e -> c e -> c e
--
-- element by element inverse tangent
arctan2' :: Fractional e => c e -> c e -> c e
cmod' :: Integral e => e -> c e -> c e
fromInt' :: c I -> c e
toInt' :: c e -> c I
fromZ' :: c Z -> c e
toZ' :: c e -> c Z
--------------------------------------------------------------------------
instance Container Vector I
where
conj' = id
size' = dim
scale' = vectorMapValI Scale
addConstant = vectorMapValI AddConstant
add = vectorZipI Add
sub = vectorZipI Sub
mul = vectorZipI Mul
equal u v = dim u == dim v && maxElement' (vectorMapI Abs (sub u v)) == 0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (fromIntegral . toScalarI MinIdx)
maxIndex' = emptyErrorV "maxIndex" (fromIntegral . toScalarI MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarI Min)
maxElement' = emptyErrorV "maxElement" (toScalarI Max)
sumElements' = sumI 1
prodElements' = prodI 1
step' = stepI
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = compareCV compareV
cselect' = selectCV selectV
scaleRecip = undefined -- cannot match
divide = undefined
arctan2' = undefined
cmod' m x
| m /= 0 = vectorMapValI ModVS m x
| otherwise = error $ "cmod 0 on vector of size "++(show $ dim x)
fromInt' = id
toInt' = id
fromZ' = long2intV
toZ' = int2longV
instance Container Vector Z
where
conj' = id
size' = dim
scale' = vectorMapValL Scale
addConstant = vectorMapValL AddConstant
add = vectorZipL Add
sub = vectorZipL Sub
mul = vectorZipL Mul
equal u v = dim u == dim v && maxElement' (vectorMapL Abs (sub u v)) == 0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (fromIntegral . toScalarL MinIdx)
maxIndex' = emptyErrorV "maxIndex" (fromIntegral . toScalarL MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarL Min)
maxElement' = emptyErrorV "maxElement" (toScalarL Max)
sumElements' = sumL 1
prodElements' = prodL 1
step' = stepL
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = compareCV compareV
cselect' = selectCV selectV
scaleRecip = undefined -- cannot match
divide = undefined
arctan2' = undefined
cmod' m x
| m /= 0 = vectorMapValL ModVS m x
| otherwise = error $ "cmod 0 on vector of size "++(show $ dim x)
fromInt' = int2longV
toInt' = long2intV
fromZ' = id
toZ' = id
instance Container Vector Float
where
conj' = id
size' = dim
scale' = vectorMapValF Scale
addConstant = vectorMapValF AddConstant
add = vectorZipF Add
sub = vectorZipF Sub
mul = vectorZipF Mul
equal u v = dim u == dim v && maxElement (vectorMapF Abs (sub u v)) == 0.0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (round . toScalarF MinIdx)
maxIndex' = emptyErrorV "maxIndex" (round . toScalarF MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarF Min)
maxElement' = emptyErrorV "maxElement" (toScalarF Max)
sumElements' = sumF
prodElements' = prodF
step' = stepF
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = compareCV compareV
cselect' = selectCV selectV
scaleRecip = vectorMapValF Recip
divide = vectorZipF Div
arctan2' = vectorZipF ATan2
cmod' = undefined
fromInt' = int2floatV
toInt' = float2IntV
fromZ' = (single :: Vector R-> Vector Float) . fromZ'
toZ' = toZ' . double
instance Container Vector Double
where
conj' = id
size' = dim
scale' = vectorMapValR Scale
addConstant = vectorMapValR AddConstant
add = vectorZipR Add
sub = vectorZipR Sub
mul = vectorZipR Mul
equal u v = dim u == dim v && maxElement (vectorMapR Abs (sub u v)) == 0.0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (round . toScalarR MinIdx)
maxIndex' = emptyErrorV "maxIndex" (round . toScalarR MaxIdx)
minElement' = emptyErrorV "minElement" (toScalarR Min)
maxElement' = emptyErrorV "maxElement" (toScalarR Max)
sumElements' = sumR
prodElements' = prodR
step' = stepD
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = compareCV compareV
cselect' = selectCV selectV
scaleRecip = vectorMapValR Recip
divide = vectorZipR Div
arctan2' = vectorZipR ATan2
cmod' = undefined
fromInt' = int2DoubleV
toInt' = double2IntV
fromZ' = long2DoubleV
toZ' = double2longV
instance Container Vector (Complex Double)
where
conj' = conjugateC
size' = dim
scale' = vectorMapValC Scale
addConstant = vectorMapValC AddConstant
add = vectorZipC Add
sub = vectorZipC Sub
mul = vectorZipC Mul
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (minIndex' . fst . fromComplex . (mul <*> conj'))
maxIndex' = emptyErrorV "maxIndex" (maxIndex' . fst . fromComplex . (mul <*> conj'))
minElement' = emptyErrorV "minElement" (atIndex' <*> minIndex')
maxElement' = emptyErrorV "maxElement" (atIndex' <*> maxIndex')
sumElements' = sumC
prodElements' = prodC
step' = undefined -- cannot match
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = undefined -- cannot match
cselect' = selectCV selectV
scaleRecip = vectorMapValC Recip
divide = vectorZipC Div
arctan2' = vectorZipC ATan2
cmod' = undefined
fromInt' = complex . int2DoubleV
toInt' = toInt' . fst . fromComplex
fromZ' = complex . long2DoubleV
toZ' = toZ' . fst . fromComplex
instance Container Vector (Complex Float)
where
conj' = conjugateQ
size' = dim
scale' = vectorMapValQ Scale
addConstant = vectorMapValQ AddConstant
add = vectorZipQ Add
sub = vectorZipQ Sub
mul = vectorZipQ Mul
equal u v = dim u == dim v && maxElement (mapVector magnitude (sub u v)) == 0.0
scalar' x = fromList [x]
konst' = constantD
build' = buildV
cmap' = mapVector
atIndex' = (@>)
minIndex' = emptyErrorV "minIndex" (minIndex' . fst . fromComplex . (mul <*> conj'))
maxIndex' = emptyErrorV "maxIndex" (maxIndex' . fst . fromComplex . (mul <*> conj'))
minElement' = emptyErrorV "minElement" (atIndex' <*> minIndex')
maxElement' = emptyErrorV "maxElement" (atIndex' <*> maxIndex')
sumElements' = sumQ
prodElements' = prodQ
step' = undefined -- cannot match
find' = findV
assoc' = assocV
accum' = accumV
ccompare' = undefined -- cannot match
cselect' = selectCV selectV
scaleRecip = vectorMapValQ Recip
divide = vectorZipQ Div
arctan2' = vectorZipQ ATan2
cmod' = undefined
fromInt' = complex . int2floatV
toInt' = toInt' . fst . fromComplex
fromZ' = complex . single . long2DoubleV
toZ' = toZ' . double . fst . fromComplex
---------------------------------------------------------------
instance (Num a, Element a, Container Vector a) => Container Matrix a
where
conj' = liftMatrix conj'
size' = size
scale' x = liftMatrix (scale' x)
addConstant x = liftMatrix (addConstant x)
add = liftMatrix2 add
sub = liftMatrix2 sub
mul = liftMatrix2 mul
equal a b = cols a == cols b && flatten a `equal` flatten b
scalar' x = (1><1) [x]
konst' v (r,c) = matrixFromVector RowMajor r c (konst' v (r*c))
build' = buildM
cmap' f = liftMatrix (mapVector f)
atIndex' = (@@>)
minIndex' = emptyErrorM "minIndex of Matrix" $
\m -> divMod (minIndex' $ flatten m) (cols m)
maxIndex' = emptyErrorM "maxIndex of Matrix" $
\m -> divMod (maxIndex' $ flatten m) (cols m)
minElement' = emptyErrorM "minElement of Matrix" (atIndex' <*> minIndex')
maxElement' = emptyErrorM "maxElement of Matrix" (atIndex' <*> maxIndex')
sumElements' = sumElements' . flatten
prodElements' = prodElements' . flatten
step' = liftMatrix step'
find' = findM
assoc' = assocM
accum' = accumM
ccompare' = compareM
cselect' = selectM
scaleRecip x = liftMatrix (scaleRecip x)
divide = liftMatrix2 divide
arctan2' = liftMatrix2 arctan2'
cmod' m x
| m /= 0 = liftMatrix (cmod' m) x
| otherwise = error $ "cmod 0 on matrix "++shSize x
fromInt' = liftMatrix fromInt'
toInt' = liftMatrix toInt'
fromZ' = liftMatrix fromZ'
toZ' = liftMatrix toZ'
emptyErrorV msg f v =
if dim v > 0
then f v
else error $ msg ++ " of empty Vector"
emptyErrorM msg f m =
if rows m > 0 && cols m > 0
then f m
else error $ msg++" "++shSize m
--------------------------------------------------------------------------------
-- | create a structure with a single element
--
-- >>> let v = fromList [1..3::Double]
-- >>> v / scalar (norm2 v)
-- fromList [0.2672612419124244,0.5345224838248488,0.8017837257372732]
--
scalar :: Container c e => e -> c e
scalar = scalar'
-- | complex conjugate
conj :: Container c e => c e -> c e
conj = conj'
-- | multiplication by scalar
scale :: Container c e => e -> c e -> c e
scale = scale'
arctan2 :: (Fractional e, Container c e) => c e -> c e -> c e
arctan2 = arctan2'
-- | 'mod' for integer arrays
--
-- >>> cmod 3 (range 5)
-- fromList [0,1,2,0,1]
cmod :: (Integral e, Container c e) => e -> c e -> c e
cmod = cmod'
-- |
-- >>>fromInt ((2><2) [0..3]) :: Matrix (Complex Double)
-- (2><2)
-- [ 0.0 :+ 0.0, 1.0 :+ 0.0
-- , 2.0 :+ 0.0, 3.0 :+ 0.0 ]
--
fromInt :: (Container c e) => c I -> c e
fromInt = fromInt'
toInt :: (Container c e) => c e -> c I
toInt = toInt'
fromZ :: (Container c e) => c Z -> c e
fromZ = fromZ'
toZ :: (Container c e) => c e -> c Z
toZ = toZ'
-- | like 'fmap' (cannot implement instance Functor because of Element class constraint)
cmap :: (Element b, Container c e) => (e -> b) -> c e -> c b
cmap = cmap'
-- | generic indexing function
--
-- >>> vector [1,2,3] `atIndex` 1
-- 2.0
--
-- >>> matrix 3 [0..8] `atIndex` (2,0)
-- 6.0
--
atIndex :: Container c e => c e -> IndexOf c -> e
atIndex = atIndex'
-- | index of minimum element
minIndex :: Container c e => c e -> IndexOf c
minIndex = minIndex'
-- | index of maximum element
maxIndex :: Container c e => c e -> IndexOf c
maxIndex = maxIndex'
-- | value of minimum element
minElement :: Container c e => c e -> e
minElement = minElement'
-- | value of maximum element
maxElement :: Container c e => c e -> e
maxElement = maxElement'
-- | the sum of elements
sumElements :: Container c e => c e -> e
sumElements = sumElements'
-- | the product of elements
prodElements :: Container c e => c e -> e
prodElements = prodElements'
-- | A more efficient implementation of @cmap (\\x -> if x>0 then 1 else 0)@
--
-- >>> step $ linspace 5 (-1,1::Double)
-- 5 |> [0.0,0.0,0.0,1.0,1.0]
--
step
:: (Ord e, Container c e)
=> c e
-> c e
step = step'
-- | Element by element version of @case compare a b of {LT -> l; EQ -> e; GT -> g}@.
--
-- Arguments with any dimension = 1 are automatically expanded:
--
-- >>> cond ((1><4)[1..]) ((3><1)[1..]) 0 100 ((3><4)[1..]) :: Matrix Double
-- (3><4)
-- [ 100.0, 2.0, 3.0, 4.0
-- , 0.0, 100.0, 7.0, 8.0
-- , 0.0, 0.0, 100.0, 12.0 ]
--
-- >>> let chop x = cond (abs x) 1E-6 0 0 x
--
cond
:: (Ord e, Container c e, Container c x)
=> c e -- ^ a
-> c e -- ^ b
-> c x -- ^ l
-> c x -- ^ e
-> c x -- ^ g
-> c x -- ^ result
cond a b l e g = cselect' (ccompare' a b) l e g
-- | Find index of elements which satisfy a predicate
--
-- >>> find (>0) (ident 3 :: Matrix Double)
-- [(0,0),(1,1),(2,2)]
--
find
:: Container c e
=> (e -> Bool)
-> c e
-> [IndexOf c]
find = find'
-- | Create a structure from an association list
--
-- >>> assoc 5 0 [(3,7),(1,4)] :: Vector Double
-- fromList [0.0,4.0,0.0,7.0,0.0]
--
-- >>> assoc (2,3) 0 [((0,2),7),((1,0),2*i-3)] :: Matrix (Complex Double)
-- (2><3)
-- [ 0.0 :+ 0.0, 0.0 :+ 0.0, 7.0 :+ 0.0
-- , (-3.0) :+ 2.0, 0.0 :+ 0.0, 0.0 :+ 0.0 ]
--
assoc
:: Container c e
=> IndexOf c -- ^ size
-> e -- ^ default value
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
assoc = assoc'
-- | Modify a structure using an update function
--
-- >>> accum (ident 5) (+) [((1,1),5),((0,3),3)] :: Matrix Double
-- (5><5)
-- [ 1.0, 0.0, 0.0, 3.0, 0.0
-- , 0.0, 6.0, 0.0, 0.0, 0.0
-- , 0.0, 0.0, 1.0, 0.0, 0.0
-- , 0.0, 0.0, 0.0, 1.0, 0.0
-- , 0.0, 0.0, 0.0, 0.0, 1.0 ]
--
-- computation of histogram:
--
-- >>> accum (konst 0 7) (+) (map (flip (,) 1) [4,5,4,1,5,2,5]) :: Vector Double
-- fromList [0.0,1.0,1.0,0.0,2.0,3.0,0.0]
--
accum
:: Container c e
=> c e -- ^ initial structure
-> (e -> e -> e) -- ^ update function
-> [(IndexOf c, e)] -- ^ association list
-> c e -- ^ result
accum = accum'
--------------------------------------------------------------------------------
-- | Matrix product and related functions
class (Num e, Element e) => Product e where
-- | matrix product
multiply :: Matrix e -> Matrix e -> Matrix e
-- | sum of absolute value of elements (differs in complex case from @norm1@)
absSum :: Vector e -> RealOf e
-- | sum of absolute value of elements
norm1 :: Vector e -> RealOf e
-- | euclidean norm
norm2 :: Floating e => Vector e -> RealOf e
-- | element of maximum magnitude
normInf :: Vector e -> RealOf e
instance Product Float where
norm2 = emptyVal (toScalarF Norm2)
absSum = emptyVal (toScalarF AbsSum)
norm1 = emptyVal (toScalarF AbsSum)
normInf = emptyVal (maxElement . vectorMapF Abs)
multiply = emptyMul multiplyF
instance Product Double where
norm2 = emptyVal (toScalarR Norm2)
absSum = emptyVal (toScalarR AbsSum)
norm1 = emptyVal (toScalarR AbsSum)
normInf = emptyVal (maxElement . vectorMapR Abs)
multiply = emptyMul multiplyR
instance Product (Complex Float) where
norm2 = emptyVal (toScalarQ Norm2)
absSum = emptyVal (toScalarQ AbsSum)
norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapQ Abs)
normInf = emptyVal (maxElement . fst . fromComplex . vectorMapQ Abs)
multiply = emptyMul multiplyQ
instance Product (Complex Double) where
norm2 = emptyVal (toScalarC Norm2)
absSum = emptyVal (toScalarC AbsSum)
norm1 = emptyVal (sumElements . fst . fromComplex . vectorMapC Abs)
normInf = emptyVal (maxElement . fst . fromComplex . vectorMapC Abs)
multiply = emptyMul multiplyC
instance Product I where
norm2 = undefined
absSum = emptyVal (sumElements . vectorMapI Abs)
norm1 = absSum
normInf = emptyVal (maxElement . vectorMapI Abs)
multiply = emptyMul (multiplyI 1)
instance Product Z where
norm2 = undefined
absSum = emptyVal (sumElements . vectorMapL Abs)
norm1 = absSum
normInf = emptyVal (maxElement . vectorMapL Abs)
multiply = emptyMul (multiplyL 1)
emptyMul m a b
| x1 == 0 && x2 == 0 || r == 0 || c == 0 = konst' 0 (r,c)
| otherwise = m a b
where
r = rows a
x1 = cols a
x2 = rows b
c = cols b
emptyVal f v =
if dim v > 0
then f v
else 0
-- FIXME remove unused C wrappers
-- | unconjugated dot product
udot :: Product e => Vector e -> Vector e -> e
udot u v
| dim u == dim v = val (asRow u `multiply` asColumn v)
| otherwise = error $ "different dimensions "++show (dim u)++" and "++show (dim v)++" in dot product"
where
val m | dim u > 0 = m@@>(0,0)
| otherwise = 0
----------------------------------------------------------
-- synonym for matrix product
mXm :: Product t => Matrix t -> Matrix t -> Matrix t
mXm = multiply
-- matrix - vector product
mXv :: Product t => Matrix t -> Vector t -> Vector t
mXv m v = flatten $ m `mXm` (asColumn v)
-- vector - matrix product
vXm :: Product t => Vector t -> Matrix t -> Vector t
vXm v m = flatten $ (asRow v) `mXm` m
{- | Outer product of two vectors.
>>> fromList [1,2,3] `outer` fromList [5,2,3]
(3><3)
[ 5.0, 2.0, 3.0
, 10.0, 4.0, 6.0
, 15.0, 6.0, 9.0 ]
-}
outer :: (Product t) => Vector t -> Vector t -> Matrix t
outer u v = asColumn u `multiply` asRow v
{- | Kronecker product of two matrices.
@m1=(2><3)
[ 1.0, 2.0, 0.0
, 0.0, -1.0, 3.0 ]
m2=(4><3)
[ 1.0, 2.0, 3.0
, 4.0, 5.0, 6.0
, 7.0, 8.0, 9.0
, 10.0, 11.0, 12.0 ]@
>>> kronecker m1 m2
(8><9)
[ 1.0, 2.0, 3.0, 2.0, 4.0, 6.0, 0.0, 0.0, 0.0
, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 0.0, 0.0, 0.0
, 7.0, 8.0, 9.0, 14.0, 16.0, 18.0, 0.0, 0.0, 0.0
, 10.0, 11.0, 12.0, 20.0, 22.0, 24.0, 0.0, 0.0, 0.0
, 0.0, 0.0, 0.0, -1.0, -2.0, -3.0, 3.0, 6.0, 9.0
, 0.0, 0.0, 0.0, -4.0, -5.0, -6.0, 12.0, 15.0, 18.0
, 0.0, 0.0, 0.0, -7.0, -8.0, -9.0, 21.0, 24.0, 27.0
, 0.0, 0.0, 0.0, -10.0, -11.0, -12.0, 30.0, 33.0, 36.0 ]
-}
kronecker :: (Product t) => Matrix t -> Matrix t -> Matrix t
kronecker a b = fromBlocks
. chunksOf (cols a)
. map (reshape (cols b))
. toRows
$ flatten a `outer` flatten b
-------------------------------------------------------------------
class Convert t where
real :: Complexable c => c (RealOf t) -> c t
complex :: Complexable c => c t -> c (ComplexOf t)
single :: Complexable c => c t -> c (SingleOf t)
double :: Complexable c => c t -> c (DoubleOf t)
toComplex :: (Complexable c, RealElement t) => (c t, c t) -> c (Complex t)
fromComplex :: (Complexable c, RealElement t) => c (Complex t) -> (c t, c t)
instance Convert Double where
real = id
complex = comp'
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert Float where
real = id
complex = comp'
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Double) where
real = comp'
complex = id
single = single'
double = id
toComplex = toComplex'
fromComplex = fromComplex'
instance Convert (Complex Float) where
real = comp'
complex = id
single = id
double = double'
toComplex = toComplex'
fromComplex = fromComplex'
-------------------------------------------------------------------
type family RealOf x
type instance RealOf Double = Double
type instance RealOf (Complex Double) = Double
type instance RealOf Float = Float
type instance RealOf (Complex Float) = Float
type instance RealOf I = I
type instance RealOf Z = Z
type family ComplexOf x
type instance ComplexOf Double = Complex Double
type instance ComplexOf (Complex Double) = Complex Double
type instance ComplexOf Float = Complex Float
type instance ComplexOf (Complex Float) = Complex Float
type family SingleOf x
type instance SingleOf Double = Float
type instance SingleOf Float = Float
type instance SingleOf (Complex a) = Complex (SingleOf a)
type family DoubleOf x
type instance DoubleOf Double = Double
type instance DoubleOf Float = Double
type instance DoubleOf (Complex a) = Complex (DoubleOf a)
type family ElementOf c
type instance ElementOf (Vector a) = a
type instance ElementOf (Matrix a) = a
------------------------------------------------------------
buildM (rc,cc) f = fromLists [ [f r c | c <- cs] | r <- rs ]
where rs = map fromIntegral [0 .. (rc-1)]
cs = map fromIntegral [0 .. (cc-1)]
buildV n f = fromList [f k | k <- ks]
where ks = map fromIntegral [0 .. (n-1)]
--------------------------------------------------------
-- | Creates a square matrix with a given diagonal.
diag :: (Num a, Element a) => Vector a -> Matrix a
diag v = diagRect 0 v n n where n = dim v
-- | creates the identity matrix of given dimension
ident :: (Num a, Element a) => Int -> Matrix a
ident n = diag (constantD 1 n)
--------------------------------------------------------
findV p x = foldVectorWithIndex g [] x where
g k z l = if p z then k:l else l
findM p x = map ((`divMod` cols x)) $ findV p (flatten x)
assocV n z xs = ST.runSTVector $ do
v <- ST.newVector z n
mapM_ (\(k,x) -> ST.writeVector v k x) xs
return v
assocM (r,c) z xs = ST.runSTMatrix $ do
m <- ST.newMatrix z r c
mapM_ (\((i,j),x) -> ST.writeMatrix m i j x) xs
return m
accumV v0 f xs = ST.runSTVector $ do
v <- ST.thawVector v0
mapM_ (\(k,x) -> ST.modifyVector v k (f x)) xs
return v
accumM m0 f xs = ST.runSTMatrix $ do
m <- ST.thawMatrix m0
mapM_ (\((i,j),x) -> ST.modifyMatrix m i j (f x)) xs
return m
----------------------------------------------------------------------
compareM a b = matrixFromVector RowMajor (rows a'') (cols a'') $ ccompare' a' b'
where
args@(a'':_) = conformMs [a,b]
[a', b'] = map flatten args
compareCV f a b = f a' b'
where
[a', b'] = conformVs [a,b]
selectM c l e t = matrixFromVector RowMajor (rows a'') (cols a'') $ cselect' (toInt c') l' e' t'
where
args@(a'':_) = conformMs [fromInt c,l,e,t]
[c', l', e', t'] = map flatten args
selectCV f c l e t = f (toInt c') l' e' t'
where
[c', l', e', t'] = conformVs [fromInt c,l,e,t]
--------------------------------------------------------------------------------
class CTrans t
where
ctrans :: Matrix t -> Matrix t
ctrans = trans
instance CTrans Float
instance CTrans R
instance CTrans I
instance CTrans Z
instance CTrans C
where
ctrans = conj . trans
instance CTrans (Complex Float)
where
ctrans = conj . trans
class Transposable m mt | m -> mt, mt -> m
where
-- | conjugate transpose
tr :: m -> mt
-- | transpose
tr' :: m -> mt
instance (CTrans t, Container Vector t) => Transposable (Matrix t) (Matrix t)
where
tr = ctrans
tr' = trans
class Linear t v
where
scalarL :: t -> v
addL :: v -> v -> v
scaleL :: t -> v -> v
class Testable t
where
checkT :: t -> (Bool, IO())
ioCheckT :: t -> IO (Bool, IO())
ioCheckT = return . checkT
--------------------------------------------------------------------------------
|