1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
#if __GLASGOW_HASKELL__ >= 708
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
{- |
Module : Internal.Static
Copyright : (c) Alberto Ruiz 2006-14
License : BSD3
Stability : provisional
-}
module Internal.Static where
import GHC.TypeLits
import qualified Numeric.LinearAlgebra as LA
import Numeric.LinearAlgebra hiding (konst,size,R,C)
import Internal.Vector as D hiding (R,C)
import Internal.ST
import Data.Proxy(Proxy)
import Foreign.Storable(Storable)
import Text.Printf
--------------------------------------------------------------------------------
type ℝ = Double
type ℂ = Complex Double
newtype Dim (n :: Nat) t = Dim t
deriving Show
lift1F
:: (c t -> c t)
-> Dim n (c t) -> Dim n (c t)
lift1F f (Dim v) = Dim (f v)
lift2F
:: (c t -> c t -> c t)
-> Dim n (c t) -> Dim n (c t) -> Dim n (c t)
lift2F f (Dim u) (Dim v) = Dim (f u v)
--------------------------------------------------------------------------------
newtype R n = R (Dim n (Vector ℝ))
deriving (Num,Fractional,Floating)
newtype C n = C (Dim n (Vector ℂ))
deriving (Num,Fractional,Floating)
newtype L m n = L (Dim m (Dim n (Matrix ℝ)))
newtype M m n = M (Dim m (Dim n (Matrix ℂ)))
mkR :: Vector ℝ -> R n
mkR = R . Dim
mkC :: Vector ℂ -> C n
mkC = C . Dim
mkL :: Matrix ℝ -> L m n
mkL x = L (Dim (Dim x))
mkM :: Matrix ℂ -> M m n
mkM x = M (Dim (Dim x))
--------------------------------------------------------------------------------
type V n t = Dim n (Vector t)
ud :: Dim n (Vector t) -> Vector t
ud (Dim v) = v
mkV :: forall (n :: Nat) t . t -> Dim n t
mkV = Dim
vconcat :: forall n m t . (KnownNat n, KnownNat m, Numeric t)
=> V n t -> V m t -> V (n+m) t
(ud -> u) `vconcat` (ud -> v) = mkV (vjoin [u', v'])
where
du = fromIntegral . natVal $ (undefined :: Proxy n)
dv = fromIntegral . natVal $ (undefined :: Proxy m)
u' | du > 1 && LA.size u == 1 = LA.konst (u D.@> 0) du
| otherwise = u
v' | dv > 1 && LA.size v == 1 = LA.konst (v D.@> 0) dv
| otherwise = v
gvec2 :: Storable t => t -> t -> V 2 t
gvec2 a b = mkV $ runSTVector $ do
v <- newUndefinedVector 2
writeVector v 0 a
writeVector v 1 b
return v
gvec3 :: Storable t => t -> t -> t -> V 3 t
gvec3 a b c = mkV $ runSTVector $ do
v <- newUndefinedVector 3
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
return v
gvec4 :: Storable t => t -> t -> t -> t -> V 4 t
gvec4 a b c d = mkV $ runSTVector $ do
v <- newUndefinedVector 4
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
writeVector v 3 d
return v
gvect :: forall n t . (Show t, KnownNat n, Numeric t) => String -> [t] -> V n t
gvect st xs'
| ok = mkV v
| not (null rest) && null (tail rest) = abort (show xs')
| not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]")
| otherwise = abort (show xs)
where
(xs,rest) = splitAt d xs'
ok = LA.size v == d && null rest
v = LA.fromList xs
d = fromIntegral . natVal $ (undefined :: Proxy n)
abort info = error $ st++" "++show d++" can't be created from elements "++info
--------------------------------------------------------------------------------
type GM m n t = Dim m (Dim n (Matrix t))
gmat :: forall m n t . (Show t, KnownNat m, KnownNat n, Numeric t) => String -> [t] -> GM m n t
gmat st xs'
| ok = Dim (Dim x)
| not (null rest) && null (tail rest) = abort (show xs')
| not (null rest) = abort (init (show (xs++take 1 rest))++", ... ]")
| otherwise = abort (show xs)
where
(xs,rest) = splitAt (m'*n') xs'
v = LA.fromList xs
x = reshape n' v
ok = null rest && ((n' == 0 && dim v == 0) || n'> 0 && (rem (LA.size v) n' == 0) && LA.size x == (m',n'))
m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int
abort info = error $ st ++" "++show m' ++ " " ++ show n'++" can't be created from elements " ++ info
--------------------------------------------------------------------------------
class Num t => Sized t s d | s -> t, s -> d
where
konst :: t -> s
unwrap :: s -> d t
fromList :: [t] -> s
extract :: s -> d t
create :: d t -> Maybe s
size :: s -> IndexOf d
singleV v = LA.size v == 1
singleM m = rows m == 1 && cols m == 1
instance forall n. KnownNat n => Sized ℂ (C n) Vector
where
size _ = fromIntegral . natVal $ (undefined :: Proxy n)
konst x = mkC (LA.scalar x)
unwrap (C (Dim v)) = v
fromList xs = C (gvect "C" xs)
extract s@(unwrap -> v)
| singleV v = LA.konst (v!0) (size s)
| otherwise = v
create v
| LA.size v == size r = Just r
| otherwise = Nothing
where
r = mkC v :: C n
instance forall n. KnownNat n => Sized ℝ (R n) Vector
where
size _ = fromIntegral . natVal $ (undefined :: Proxy n)
konst x = mkR (LA.scalar x)
unwrap (R (Dim v)) = v
fromList xs = R (gvect "R" xs)
extract s@(unwrap -> v)
| singleV v = LA.konst (v!0) (size s)
| otherwise = v
create v
| LA.size v == size r = Just r
| otherwise = Nothing
where
r = mkR v :: R n
instance forall m n . (KnownNat m, KnownNat n) => Sized ℝ (L m n) Matrix
where
size _ = ((fromIntegral . natVal) (undefined :: Proxy m)
,(fromIntegral . natVal) (undefined :: Proxy n))
konst x = mkL (LA.scalar x)
fromList xs = L (gmat "L" xs)
unwrap (L (Dim (Dim m))) = m
extract (isDiag -> Just (z,y,(m',n'))) = diagRect z y m' n'
extract s@(unwrap -> a)
| singleM a = LA.konst (a `atIndex` (0,0)) (size s)
| otherwise = a
create x
| LA.size x == size r = Just r
| otherwise = Nothing
where
r = mkL x :: L m n
instance forall m n . (KnownNat m, KnownNat n) => Sized ℂ (M m n) Matrix
where
size _ = ((fromIntegral . natVal) (undefined :: Proxy m)
,(fromIntegral . natVal) (undefined :: Proxy n))
konst x = mkM (LA.scalar x)
fromList xs = M (gmat "M" xs)
unwrap (M (Dim (Dim m))) = m
extract (isDiagC -> Just (z,y,(m',n'))) = diagRect z y m' n'
extract s@(unwrap -> a)
| singleM a = LA.konst (a `atIndex` (0,0)) (size s)
| otherwise = a
create x
| LA.size x == size r = Just r
| otherwise = Nothing
where
r = mkM x :: M m n
--------------------------------------------------------------------------------
instance (KnownNat n, KnownNat m) => Transposable (L m n) (L n m)
where
tr a@(isDiag -> Just _) = mkL (extract a)
tr (extract -> a) = mkL (tr a)
tr' = tr
instance (KnownNat n, KnownNat m) => Transposable (M m n) (M n m)
where
tr a@(isDiagC -> Just _) = mkM (extract a)
tr (extract -> a) = mkM (tr a)
tr' a@(isDiagC -> Just _) = mkM (extract a)
tr' (extract -> a) = mkM (tr' a)
--------------------------------------------------------------------------------
isDiag :: forall m n . (KnownNat m, KnownNat n) => L m n -> Maybe (ℝ, Vector ℝ, (Int,Int))
isDiag (L x) = isDiagg x
isDiagC :: forall m n . (KnownNat m, KnownNat n) => M m n -> Maybe (ℂ, Vector ℂ, (Int,Int))
isDiagC (M x) = isDiagg x
isDiagg :: forall m n t . (Numeric t, KnownNat m, KnownNat n) => GM m n t -> Maybe (t, Vector t, (Int,Int))
isDiagg (Dim (Dim x))
| singleM x = Nothing
| rows x == 1 && m' > 1 || cols x == 1 && n' > 1 = Just (z,yz,(m',n'))
| otherwise = Nothing
where
m' = fromIntegral . natVal $ (undefined :: Proxy m) :: Int
n' = fromIntegral . natVal $ (undefined :: Proxy n) :: Int
v = flatten x
z = v `atIndex` 0
y = subVector 1 (LA.size v-1) v
ny = LA.size y
zeros = LA.konst 0 (max 0 (min m' n' - ny))
yz = vjoin [y,zeros]
--------------------------------------------------------------------------------
instance forall n . KnownNat n => Show (R n)
where
show s@(R (Dim v))
| singleV v = "("++show (v!0)++" :: R "++show d++")"
| otherwise = "(vector"++ drop 8 (show v)++" :: R "++show d++")"
where
d = size s
instance forall n . KnownNat n => Show (C n)
where
show s@(C (Dim v))
| singleV v = "("++show (v!0)++" :: C "++show d++")"
| otherwise = "(vector"++ drop 8 (show v)++" :: C "++show d++")"
where
d = size s
instance forall m n . (KnownNat m, KnownNat n) => Show (L m n)
where
show (isDiag -> Just (z,y,(m',n'))) = printf "(diag %s %s :: L %d %d)" (show z) (drop 9 $ show y) m' n'
show s@(L (Dim (Dim x)))
| singleM x = printf "(%s :: L %d %d)" (show (x `atIndex` (0,0))) m' n'
| otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: L "++show m'++" "++show n'++")"
where
(m',n') = size s
instance forall m n . (KnownNat m, KnownNat n) => Show (M m n)
where
show (isDiagC -> Just (z,y,(m',n'))) = printf "(diag %s %s :: M %d %d)" (show z) (drop 9 $ show y) m' n'
show s@(M (Dim (Dim x)))
| singleM x = printf "(%s :: M %d %d)" (show (x `atIndex` (0,0))) m' n'
| otherwise = "(matrix"++ dropWhile (/='\n') (show x)++" :: M "++show m'++" "++show n'++")"
where
(m',n') = size s
--------------------------------------------------------------------------------
instance forall n t . (Num (Vector t), Numeric t )=> Num (Dim n (Vector t))
where
(+) = lift2F (+)
(*) = lift2F (*)
(-) = lift2F (-)
abs = lift1F abs
signum = lift1F signum
negate = lift1F negate
fromInteger x = Dim (fromInteger x)
instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim n (Vector t))
where
fromRational x = Dim (fromRational x)
(/) = lift2F (/)
instance (Fractional t, Floating (Vector t), Numeric t) => Floating (Dim n (Vector t)) where
sin = lift1F sin
cos = lift1F cos
tan = lift1F tan
asin = lift1F asin
acos = lift1F acos
atan = lift1F atan
sinh = lift1F sinh
cosh = lift1F cosh
tanh = lift1F tanh
asinh = lift1F asinh
acosh = lift1F acosh
atanh = lift1F atanh
exp = lift1F exp
log = lift1F log
sqrt = lift1F sqrt
(**) = lift2F (**)
pi = Dim pi
instance (Num (Matrix t), Numeric t) => Num (Dim m (Dim n (Matrix t)))
where
(+) = (lift2F . lift2F) (+)
(*) = (lift2F . lift2F) (*)
(-) = (lift2F . lift2F) (-)
abs = (lift1F . lift1F) abs
signum = (lift1F . lift1F) signum
negate = (lift1F . lift1F) negate
fromInteger x = Dim (Dim (fromInteger x))
instance (Num (Vector t), Num (Matrix t), Fractional t, Numeric t) => Fractional (Dim m (Dim n (Matrix t)))
where
fromRational x = Dim (Dim (fromRational x))
(/) = (lift2F.lift2F) (/)
instance (Num (Vector t), Floating (Matrix t), Fractional t, Numeric t) => Floating (Dim m (Dim n (Matrix t))) where
sin = (lift1F . lift1F) sin
cos = (lift1F . lift1F) cos
tan = (lift1F . lift1F) tan
asin = (lift1F . lift1F) asin
acos = (lift1F . lift1F) acos
atan = (lift1F . lift1F) atan
sinh = (lift1F . lift1F) sinh
cosh = (lift1F . lift1F) cosh
tanh = (lift1F . lift1F) tanh
asinh = (lift1F . lift1F) asinh
acosh = (lift1F . lift1F) acosh
atanh = (lift1F . lift1F) atanh
exp = (lift1F . lift1F) exp
log = (lift1F . lift1F) log
sqrt = (lift1F . lift1F) sqrt
(**) = (lift2F . lift2F) (**)
pi = Dim (Dim pi)
--------------------------------------------------------------------------------
adaptDiag f a@(isDiag -> Just _) b | isFull b = f (mkL (extract a)) b
adaptDiag f a b@(isDiag -> Just _) | isFull a = f a (mkL (extract b))
adaptDiag f a b = f a b
isFull m = isDiag m == Nothing && not (singleM (unwrap m))
lift1L f (L v) = L (f v)
lift2L f (L a) (L b) = L (f a b)
lift2LD f = adaptDiag (lift2L f)
instance (KnownNat n, KnownNat m) => Num (L n m)
where
(+) = lift2LD (+)
(*) = lift2LD (*)
(-) = lift2LD (-)
abs = lift1L abs
signum = lift1L signum
negate = lift1L negate
fromInteger = L . Dim . Dim . fromInteger
instance (KnownNat n, KnownNat m) => Fractional (L n m)
where
fromRational = L . Dim . Dim . fromRational
(/) = lift2LD (/)
instance (KnownNat n, KnownNat m) => Floating (L n m) where
sin = lift1L sin
cos = lift1L cos
tan = lift1L tan
asin = lift1L asin
acos = lift1L acos
atan = lift1L atan
sinh = lift1L sinh
cosh = lift1L cosh
tanh = lift1L tanh
asinh = lift1L asinh
acosh = lift1L acosh
atanh = lift1L atanh
exp = lift1L exp
log = lift1L log
sqrt = lift1L sqrt
(**) = lift2LD (**)
pi = konst pi
--------------------------------------------------------------------------------
adaptDiagC f a@(isDiagC -> Just _) b | isFullC b = f (mkM (extract a)) b
adaptDiagC f a b@(isDiagC -> Just _) | isFullC a = f a (mkM (extract b))
adaptDiagC f a b = f a b
isFullC m = isDiagC m == Nothing && not (singleM (unwrap m))
lift1M f (M v) = M (f v)
lift2M f (M a) (M b) = M (f a b)
lift2MD f = adaptDiagC (lift2M f)
instance (KnownNat n, KnownNat m) => Num (M n m)
where
(+) = lift2MD (+)
(*) = lift2MD (*)
(-) = lift2MD (-)
abs = lift1M abs
signum = lift1M signum
negate = lift1M negate
fromInteger = M . Dim . Dim . fromInteger
instance (KnownNat n, KnownNat m) => Fractional (M n m)
where
fromRational = M . Dim . Dim . fromRational
(/) = lift2MD (/)
instance (KnownNat n, KnownNat m) => Floating (M n m) where
sin = lift1M sin
cos = lift1M cos
tan = lift1M tan
asin = lift1M asin
acos = lift1M acos
atan = lift1M atan
sinh = lift1M sinh
cosh = lift1M cosh
tanh = lift1M tanh
asinh = lift1M asinh
acosh = lift1M acosh
atanh = lift1M atanh
exp = lift1M exp
log = lift1M log
sqrt = lift1M sqrt
(**) = lift2MD (**)
pi = M pi
--------------------------------------------------------------------------------
class Disp t
where
disp :: Int -> t -> IO ()
instance (KnownNat m, KnownNat n) => Disp (L m n)
where
disp n x = do
let a = extract x
let su = LA.dispf n a
printf "L %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su)
instance (KnownNat m, KnownNat n) => Disp (M m n)
where
disp n x = do
let a = extract x
let su = LA.dispcf n a
printf "M %d %d" (rows a) (cols a) >> putStr (dropWhile (/='\n') $ su)
instance KnownNat n => Disp (R n)
where
disp n v = do
let su = LA.dispf n (asRow $ extract v)
putStr "R " >> putStr (tail . dropWhile (/='x') $ su)
instance KnownNat n => Disp (C n)
where
disp n v = do
let su = LA.dispcf n (asRow $ extract v)
putStr "C " >> putStr (tail . dropWhile (/='x') $ su)
--------------------------------------------------------------------------------
#else
module Numeric.LinearAlgebra.Static.Internal where
#endif
|