1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra
Copyright : (c) Alberto Ruiz 2006-14
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
-}
-----------------------------------------------------------------------------
module Numeric.LinearAlgebra (
-- * Basic types and data processing
module Numeric.LinearAlgebra.Data,
-- * Arithmetic and numeric classes
-- |
-- The standard numeric classes are defined elementwise:
--
-- >>> fromList [1,2,3] * fromList [3,0,-2 :: Double]
-- fromList [3.0,0.0,-6.0]
--
-- >>> (3><3) [1..9] * ident 3 :: Matrix Double
-- (3><3)
-- [ 1.0, 0.0, 0.0
-- , 0.0, 5.0, 0.0
-- , 0.0, 0.0, 9.0 ]
--
-- In arithmetic operations single-element vectors and matrices
-- (created from numeric literals or using 'scalar') automatically
-- expand to match the dimensions of the other operand:
--
-- >>> 5 + 2*ident 3 :: Matrix Double
-- (3><3)
-- [ 7.0, 5.0, 5.0
-- , 5.0, 7.0, 5.0
-- , 5.0, 5.0, 7.0 ]
--
-- * Matrix product
(<.>),
-- | The overloaded multiplication operators may need type annotations to remove
-- ambiguity. In those cases we can also use the specific functions 'mXm', 'mXv', and 'dot'.
--
-- The matrix x matrix product is also implemented in the "Data.Monoid" instance, where
-- single-element matrices (created from numeric literals or using 'scalar')
-- are used for scaling.
--
-- >>> let m = (2><3)[1..] :: Matrix Double
-- >>> m <> 2 <> diagl[0.5,1,0]
-- (2><3)
-- [ 1.0, 4.0, 0.0
-- , 4.0, 10.0, 0.0 ]
--
-- 'mconcat' uses 'optimiseMult' to get the optimal association order.
-- * Other products
outer, kronecker, cross,
scale,
sumElements, prodElements, absSum,
-- * Linear Systems
(<\>),
linearSolve,
linearSolveLS,
linearSolveSVD,
luSolve,
cholSolve,
cgSolve,
-- * Inverse and pseudoinverse
inv, pinv, pinvTol,
-- * Determinant and rank
rcond, rank, ranksv,
det, invlndet,
-- * Singular value decomposition
svd,
fullSVD,
thinSVD,
compactSVD,
singularValues,
leftSV, rightSV,
-- * Eigensystems
eig, eigSH, eigSH',
eigenvalues, eigenvaluesSH, eigenvaluesSH',
geigSH',
-- * QR
qr, rq, qrRaw, qrgr,
-- * Cholesky
chol, cholSH, mbCholSH,
-- * Hessenberg
hess,
-- * Schur
schur,
-- * LU
lu, luPacked,
-- * Matrix functions
expm,
sqrtm,
matFunc,
-- * Nullspace
nullspacePrec,
nullVector,
nullspaceSVD,
null1, null1sym,
orth,
-- * Norms
norm1, norm2, normInf, pnorm, NormType(..),
-- * Correlation and convolution
corr, conv, corrMin, corr2, conv2,
-- * Random arrays
RandDist(..), randomVector, rand, randn, gaussianSample, uniformSample,
-- * Misc
meanCov, peps, relativeError, haussholder, optimiseMult, dot, udot, mXm, mXv, smXv, (<>), (◇), Seed, checkT,
-- * Auxiliary classes
Element, Container, Product, Contraction, LSDiv,
Complexable(), RealElement(),
RealOf, ComplexOf, SingleOf, DoubleOf,
IndexOf,
Field, Normed,
CGMat, Transposable
) where
import Numeric.LinearAlgebra.Data
import Numeric.Matrix()
import Numeric.Vector()
import Numeric.Container
import Numeric.LinearAlgebra.Algorithms
import Numeric.LinearAlgebra.Util
import Numeric.LinearAlgebra.Random
import Numeric.Sparse(smXv)
import Numeric.LinearAlgebra.Util.CG(cgSolve)
import Numeric.LinearAlgebra.Util.CG(CGMat)
|