1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Util
Copyright : (c) Alberto Ruiz 2013
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
-}
-----------------------------------------------------------------------------
{-# OPTIONS_HADDOCK hide #-}
module Numeric.LinearAlgebra.Util(
-- * Convenience functions
vect, mat,
disp,
zeros, ones,
diagl,
row,
col,
(&), (¦), (——), (#),
(?), (¿),
Indexable(..), size,
Numeric,
rand, randn,
cross,
norm,
ℕ,ℤ,ℝ,ℂ,𝑖,i_C, --ℍ
norm_1, norm_2, norm_0, norm_Inf, norm_Frob, norm_nuclear,
mnorm_1, mnorm_2, mnorm_0, mnorm_Inf,
unitary,
mt,
(~!~),
pairwiseD2,
rowOuters,
null1,
null1sym,
-- * Convolution
-- ** 1D
corr, conv, corrMin,
-- ** 2D
corr2, conv2, separable,
-- * Tools for the Kronecker product
--
-- | (see A. Fusiello, A matter of notation: Several uses of the Kronecker product in
-- 3d computer vision, Pattern Recognition Letters 28 (15) (2007) 2127-2132)
--
-- | @`vec` (a \<> x \<> b) == ('trans' b ` 'kronecker' ` a) \<> 'vec' x@
vec,
vech,
dup,
vtrans
) where
import Data.Packed.Numeric
import Numeric.LinearAlgebra.Algorithms hiding (i)
import Numeric.Matrix()
import Numeric.Vector()
import Numeric.LinearAlgebra.Random
import Numeric.LinearAlgebra.Util.Convolution
import Control.Monad(when)
type ℝ = Double
type ℕ = Int
type ℤ = Int
type ℂ = Complex Double
--type ℝn = Vector ℝ
--type ℂn = Vector ℂ
--newtype ℍ m = H m
i_C, 𝑖 :: ℂ
𝑖 = 0:+1
i_C = 𝑖
{- | create a real vector
>>> vect [1..5]
fromList [1.0,2.0,3.0,4.0,5.0]
-}
vect :: [ℝ] -> Vector ℝ
vect = fromList
{- | create a real matrix
>>> mat 5 [1..15]
(3><5)
[ 1.0, 2.0, 3.0, 4.0, 5.0
, 6.0, 7.0, 8.0, 9.0, 10.0
, 11.0, 12.0, 13.0, 14.0, 15.0 ]
-}
mat
:: Int -- ^ columns
-> [ℝ] -- ^ elements
-> Matrix ℝ
mat c = reshape c . fromList
{- | print a real matrix with given number of digits after the decimal point
>>> disp 5 $ ident 2 / 3
2x2
0.33333 0.00000
0.00000 0.33333
-}
disp :: Int -> Matrix Double -> IO ()
disp n = putStrLn . dispf n
{- | create a real diagonal matrix from a list
>>> diagl [1,2,3]
(3><3)
[ 1.0, 0.0, 0.0
, 0.0, 2.0, 0.0
, 0.0, 0.0, 3.0 ]
-}
diagl :: [Double] -> Matrix Double
diagl = diag . fromList
-- | a real matrix of zeros
zeros :: Int -- ^ rows
-> Int -- ^ columns
-> Matrix Double
zeros r c = konst 0 (r,c)
-- | a real matrix of ones
ones :: Int -- ^ rows
-> Int -- ^ columns
-> Matrix Double
ones r c = konst 1 (r,c)
-- | concatenation of real vectors
infixl 3 &
(&) :: Vector Double -> Vector Double -> Vector Double
a & b = vjoin [a,b]
{- | horizontal concatenation of real matrices
(unicode 0x00a6, broken bar)
>>> ident 3 ¦ konst 7 (3,4)
(3><7)
[ 1.0, 0.0, 0.0, 7.0, 7.0, 7.0, 7.0
, 0.0, 1.0, 0.0, 7.0, 7.0, 7.0, 7.0
, 0.0, 0.0, 1.0, 7.0, 7.0, 7.0, 7.0 ]
-}
infixl 3 ¦
(¦) :: Matrix Double -> Matrix Double -> Matrix Double
a ¦ b = fromBlocks [[a,b]]
-- | vertical concatenation of real matrices
--
-- (unicode 0x2014, em dash)
(——) :: Matrix Double -> Matrix Double -> Matrix Double
infixl 2 ——
a —— b = fromBlocks [[a],[b]]
(#) :: Matrix Double -> Matrix Double -> Matrix Double
infixl 2 #
a # b = fromBlocks [[a],[b]]
-- | create a single row real matrix from a list
row :: [Double] -> Matrix Double
row = asRow . fromList
-- | create a single column real matrix from a list
col :: [Double] -> Matrix Double
col = asColumn . fromList
{- | extract rows
>>> (20><4) [1..] ? [2,1,1]
(3><4)
[ 9.0, 10.0, 11.0, 12.0
, 5.0, 6.0, 7.0, 8.0
, 5.0, 6.0, 7.0, 8.0 ]
-}
infixl 9 ?
(?) :: Element t => Matrix t -> [Int] -> Matrix t
(?) = flip extractRows
{- | extract columns
(unicode 0x00bf, inverted question mark, Alt-Gr ?)
>>> (3><4) [1..] ¿ [3,0]
(3><2)
[ 4.0, 1.0
, 8.0, 5.0
, 12.0, 9.0 ]
-}
infixl 9 ¿
(¿) :: Element t => Matrix t -> [Int] -> Matrix t
(¿)= flip extractColumns
cross :: Vector Double -> Vector Double -> Vector Double
-- ^ cross product (for three-element real vectors)
cross x y | dim x == 3 && dim y == 3 = fromList [z1,z2,z3]
| otherwise = error $ "cross ("++show x++") ("++show y++")"
where
[x1,x2,x3] = toList x
[y1,y2,y3] = toList y
z1 = x2*y3-x3*y2
z2 = x3*y1-x1*y3
z3 = x1*y2-x2*y1
norm :: Vector Double -> Double
-- ^ 2-norm of real vector
norm = pnorm PNorm2
norm_2 :: Normed Vector t => Vector t -> RealOf t
norm_2 = pnorm PNorm2
norm_1 :: Normed Vector t => Vector t -> RealOf t
norm_1 = pnorm PNorm1
norm_Inf :: Normed Vector t => Vector t -> RealOf t
norm_Inf = pnorm Infinity
norm_0 :: Vector ℝ -> ℝ
norm_0 v = sumElements (step (abs v - scalar (eps*mx)))
where
mx = norm_Inf v
norm_Frob :: Normed Matrix t => Matrix t -> RealOf t
norm_Frob = pnorm Frobenius
norm_nuclear :: Field t => Matrix t -> ℝ
norm_nuclear = sumElements . singularValues
mnorm_2 :: Normed Matrix t => Matrix t -> RealOf t
mnorm_2 = pnorm PNorm2
mnorm_1 :: Normed Matrix t => Matrix t -> RealOf t
mnorm_1 = pnorm PNorm1
mnorm_Inf :: Normed Matrix t => Matrix t -> RealOf t
mnorm_Inf = pnorm Infinity
mnorm_0 :: Matrix ℝ -> ℝ
mnorm_0 = norm_0 . flatten
-- | Obtains a vector in the same direction with 2-norm=1
unitary :: Vector Double -> Vector Double
unitary v = v / scalar (norm v)
-- | trans . inv
mt :: Matrix Double -> Matrix Double
mt = trans . inv
--------------------------------------------------------------------------------
{- |
>>> size $ fromList[1..10::Double]
10
>>> size $ (2><5)[1..10::Double]
(2,5)
-}
size :: Container c t => c t -> IndexOf c
size = size'
{- |
>>> vect [1..10] ! 3
4.0
>>> mat 5 [1..15] ! 1
fromList [6.0,7.0,8.0,9.0,10.0]
>>> mat 5 [1..15] ! 1 ! 3
9.0
-}
class Indexable c t | c -> t , t -> c
where
infixl 9 !
(!) :: c -> Int -> t
instance Indexable (Vector Double) Double
where
(!) = (@>)
instance Indexable (Vector Float) Float
where
(!) = (@>)
instance Indexable (Vector (Complex Double)) (Complex Double)
where
(!) = (@>)
instance Indexable (Vector (Complex Float)) (Complex Float)
where
(!) = (@>)
instance Element t => Indexable (Matrix t) (Vector t)
where
m!j = subVector (j*c) c (flatten m)
where
c = cols m
--------------------------------------------------------------------------------
-- | Matrix of pairwise squared distances of row vectors
-- (using the matrix product trick in blog.smola.org)
pairwiseD2 :: Matrix Double -> Matrix Double -> Matrix Double
pairwiseD2 x y | ok = x2 `outer` oy + ox `outer` y2 - 2* x <> trans y
| otherwise = error $ "pairwiseD2 with different number of columns: "
++ show (size x) ++ ", " ++ show (size y)
where
ox = one (rows x)
oy = one (rows y)
oc = one (cols x)
one k = konst 1 k
x2 = x * x <> oc
y2 = y * y <> oc
ok = cols x == cols y
--------------------------------------------------------------------------------
-- | outer products of rows
rowOuters :: Matrix Double -> Matrix Double -> Matrix Double
rowOuters a b = a' * b'
where
a' = kronecker a (ones 1 (cols b))
b' = kronecker (ones 1 (cols a)) b
--------------------------------------------------------------------------------
-- | solution of overconstrained homogeneous linear system
null1 :: Matrix Double -> Vector Double
null1 = last . toColumns . snd . rightSV
-- | solution of overconstrained homogeneous symmetric linear system
null1sym :: Matrix Double -> Vector Double
null1sym = last . toColumns . snd . eigSH'
--------------------------------------------------------------------------------
vec :: Element t => Matrix t -> Vector t
-- ^ stacking of columns
vec = flatten . trans
vech :: Element t => Matrix t -> Vector t
-- ^ half-vectorization (of the lower triangular part)
vech m = vjoin . zipWith f [0..] . toColumns $ m
where
f k v = subVector k (dim v - k) v
dup :: (Num t, Num (Vector t), Element t) => Int -> Matrix t
-- ^ duplication matrix (@'dup' k \<> 'vech' m == 'vec' m@, for symmetric m of 'dim' k)
dup k = trans $ fromRows $ map f es
where
rs = zip [0..] (toRows (ident (k^(2::Int))))
es = [(i,j) | j <- [0..k-1], i <- [0..k-1], i>=j ]
f (i,j) | i == j = g (k*j + i)
| otherwise = g (k*j + i) + g (k*i + j)
g j = v
where
Just v = lookup j rs
vtrans :: Element t => Int -> Matrix t -> Matrix t
-- ^ generalized \"vector\" transposition: @'vtrans' 1 == 'trans'@, and @'vtrans' ('rows' m) m == 'asColumn' ('vec' m)@
vtrans p m | r == 0 = fromBlocks . map (map asColumn . takesV (replicate q p)) . toColumns $ m
| otherwise = error $ "vtrans " ++ show p ++ " of matrix with " ++ show (rows m) ++ " rows"
where
(q,r) = divMod (rows m) p
--------------------------------------------------------------------------------
infixl 0 ~!~
c ~!~ msg = when c (error msg)
|