summaryrefslogtreecommitdiff
path: root/packages/base/src/Numeric/LinearAlgebra/Util/CG.hs
blob: b82c74fa4dd6369cb6a856314baec315cb8753d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
{-# LANGUAGE FlexibleContexts, FlexibleInstances #-}
{-# LANGUAGE RecordWildCards #-}

module Numeric.LinearAlgebra.Util.CG(
    cgSolve, cgSolve',
    CGState(..), R, V
) where

import Data.Packed.Numeric
import Numeric.Sparse
import Numeric.Vector()
import Numeric.LinearAlgebra.Algorithms(linearSolveLS, relativeError, NormType(..))
import Control.Arrow((***))

{-
import Util.Misc(debug, debugMat)

(//) :: Show a => a -> String -> a
infix 0 // -- , ///
a // b = debug b id a

(///) :: V -> String -> V
infix 0 ///
v /// b = debugMat b 2 asRow v
-}

type R = Double
type V = Vector R

data CGState = CGState
    { cgp  :: V  -- ^ conjugate gradient
    , cgr  :: V  -- ^ residual
    , cgr2 :: R  -- ^ squared norm of residual
    , cgx  :: V  -- ^ current solution
    , cgdx :: R  -- ^ normalized size of correction
    }

cg :: Bool -> (V -> V) -> (V -> V) -> CGState -> CGState
cg sym at a (CGState p r r2 x _) = CGState p' r' r'2 x' rdx
  where
    ap1 = a p
    ap  | sym       = ap1
        | otherwise = at ap1
    pap | sym       = p <·> ap1
        | otherwise = norm2 ap1 ** 2
    alpha = r2 / pap
    dx = scale alpha p
    x' = x + dx
    r' = r - scale alpha ap
    r'2 = r' <·> r'
    beta = r'2 / r2
    p' = r' + scale beta p

    rdx = norm2 dx / max 1 (norm2 x)

conjugrad
  :: Bool -> GMatrix -> V -> V -> R -> R -> [CGState]
conjugrad sym a b = solveG (tr a !#>) (a !#>) (cg sym) b

solveG
    :: (V -> V) -> (V -> V)
    -> ((V -> V) -> (V -> V) -> CGState -> CGState)
    -> V
    -> V
    -> R -> R
    -> [CGState]
solveG mat ma meth rawb x0' ϵb ϵx
    = takeUntil ok . iterate (meth mat ma) $ CGState p0 r0 r20 x0 1
  where
    a = mat . ma
    b = mat rawb
    x0  = if x0' == 0 then konst 0 (dim b) else x0'
    r0  = b - a x0
    r20 = r0 <·> r0
    p0  = r0
    nb2 = b <·> b
    ok CGState {..}
        =  cgr2 <nb2*ϵb**2
        || cgdx < ϵx


takeUntil :: (a -> Bool) -> [a] -> [a]
takeUntil q xs = a++ take 1 b
  where
    (a,b) = break q xs

cgSolve
  :: Bool          -- ^ is symmetric
  -> GMatrix       -- ^ coefficient matrix
  -> Vector Double -- ^ right-hand side
  -> Vector Double -- ^ solution
cgSolve sym a b  = cgx $ last $ cgSolve' sym 1E-4 1E-3 n a b 0
  where
    n = max 10 (round $ sqrt (fromIntegral (dim b) :: Double))

cgSolve'
  :: Bool      -- ^ symmetric
  -> R         -- ^ relative tolerance for the residual (e.g. 1E-4)
  -> R         -- ^ relative tolerance for δx (e.g. 1E-3)
  -> Int       -- ^ maximum number of iterations
  -> GMatrix   -- ^ coefficient matrix
  -> V         -- ^ initial solution
  -> V         -- ^ right-hand side
  -> [CGState] -- ^ solution
cgSolve' sym er es n a b x = take n $ conjugrad sym a b x er es


--------------------------------------------------------------------------------

instance Testable GMatrix
  where
    checkT _ = (ok,info)
      where
        sma = convo2 20 3
        x1 = vect [1..20]
        x2 = vect [1..40]
        sm = mkSparse sma
        dm = toDense sma

        s1 = sm !#> x1
        d1 = dm #> x1

        s2 = tr sm !#> x2
        d2 = tr dm #> x2

        sdia = mkDiagR 40 20 (vect [1..10])
        s3 =    sdia !#> x1
        s4 = tr sdia !#> x2
        ddia = diagRect 0 (vect [1..10])  40 20
        d3 = ddia #> x1
        d4 = tr ddia #> x2

        v = testb 40
        s5 = cgSolve False sm v
        d5 = denseSolve dm v

        info = do
            print sm
            disp (toDense sma)
            print s1; print d1
            print s2; print d2
            print s3; print d3
            print s4; print d4
            print s5; print d5
            print $ relativeError Infinity s5 d5

        ok = s1==d1
          && s2==d2
          && s3==d3
          && s4==d4
          && relativeError Infinity s5 d5 < 1E-10

        disp = putStr . dispf 2

        vect = fromList :: [Double] -> Vector Double

        convomat :: Int -> Int -> AssocMatrix
        convomat n k = [ ((i,j `mod` n),1) | i<-[0..n-1], j <- [i..i+k-1]]

        convo2 :: Int -> Int -> AssocMatrix
        convo2 n k = m1 ++ m2
          where
            m1 = convomat n k
            m2 = map (((+n) *** id) *** id) m1
            
        testb n = vect $ take n $ cycle ([0..10]++[9,8..1])
        
        denseSolve a = flatten . linearSolveLS a . asColumn

        -- mkDiag v = mkDiagR (dim v) (dim v) v