1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -fno-warn-missing-signatures #-}
{- |
Module : Numeric.GSL.Fitting
Copyright : (c) Alberto Ruiz 2010
License : GPL
Maintainer : Alberto Ruiz
Stability : provisional
Nonlinear Least-Squares Fitting
<http://www.gnu.org/software/gsl/manual/html_node/Nonlinear-Least_002dSquares-Fitting.html>
The example program in the GSL manual (see examples/fitting.hs):
@
dat = [
([0.0],([6.0133918608118675],0.1)),
([1.0],([5.5153769909966535],0.1)),
([2.0],([5.261094606015287],0.1)),
...
([39.0],([1.0619821710802808],0.1))]
expModel [a,lambda,b] [t] = [a * exp (-lambda * t) + b]
expModelDer [a,lambda,b] [t] = [[exp (-lambda * t), -t * a * exp(-lambda*t) , 1]]
(sol,path) = fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]
@
>>> path
(6><5)
[ 1.0, 76.45780563978782, 1.6465931240727802, 1.8147715267618197e-2, 0.6465931240727797
, 2.0, 37.683816318260355, 2.858760367632973, 8.092094813253975e-2, 1.4479636296208662
, 3.0, 9.5807893736187, 4.948995119561291, 0.11942927999921617, 1.0945766509238248
, 4.0, 5.630494933603935, 5.021755718065913, 0.10287787128056883, 1.0338835440862608
, 5.0, 5.443976278682909, 5.045204331329302, 0.10405523433131504, 1.019416067207375
, 6.0, 5.4439736648994685, 5.045357818922331, 0.10404905846029407, 1.0192487112786812 ]
>>> sol
[(5.045357818922331,6.027976702418132e-2),
(0.10404905846029407,3.157045047172834e-3),
(1.0192487112786812,3.782067731353722e-2)]
-}
module Numeric.GSL.Fitting (
-- * Levenberg-Marquardt
nlFitting, FittingMethod(..),
-- * Utilities
fitModelScaled, fitModel
) where
import Numeric.LinearAlgebra.HMatrix
import Numeric.GSL.Internal
import Foreign.Ptr(FunPtr, freeHaskellFunPtr)
import Foreign.C.Types
import System.IO.Unsafe(unsafePerformIO)
#if MIN_VERSION_base(4,11,0)
import Prelude hiding ((<>))
#endif
-------------------------------------------------------------------------
type TVV = TV (TV Res)
type TVM = TV (TM Res)
data FittingMethod = LevenbergMarquardtScaled -- ^ Interface to gsl_multifit_fdfsolver_lmsder. This is a robust and efficient version of the Levenberg-Marquardt algorithm as implemented in the scaled lmder routine in minpack. Minpack was written by Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom.
| LevenbergMarquardt -- ^ This is an unscaled version of the lmder algorithm. The elements of the diagonal scaling matrix D are set to 1. This algorithm may be useful in circumstances where the scaled version of lmder converges too slowly, or the function is already scaled appropriately.
deriving (Enum,Eq,Show,Bounded)
-- | Nonlinear multidimensional least-squares fitting.
nlFitting :: FittingMethod
-> Double -- ^ absolute tolerance
-> Double -- ^ relative tolerance
-> Int -- ^ maximum number of iterations allowed
-> (Vector Double -> Vector Double) -- ^ function to be minimized
-> (Vector Double -> Matrix Double) -- ^ Jacobian
-> Vector Double -- ^ starting point
-> (Vector Double, Matrix Double) -- ^ solution vector and optimization path
nlFitting method epsabs epsrel maxit fun jac xinit = nlFitGen (fi (fromEnum method)) fun jac xinit epsabs epsrel maxit
nlFitGen m f jac xiv epsabs epsrel maxit = unsafePerformIO $ do
let p = size xiv
n = size (f xiv)
fp <- mkVecVecfun (aux_vTov (checkdim1 n p . f))
jp <- mkVecMatfun (aux_vTom (checkdim2 n p . jac))
rawpath <- createMatrix RowMajor maxit (2+p)
(xiv `applyRaw` (rawpath `applyRaw` id)) (c_nlfit m fp jp epsabs epsrel (fi maxit) (fi n)) #|"c_nlfit"
let it = round (rawpath `atIndex` (maxit-1,0))
path = takeRows it rawpath
[sol] = toRows $ dropRows (it-1) path
freeHaskellFunPtr fp
freeHaskellFunPtr jp
return (subVector 2 p sol, path)
foreign import ccall safe "nlfit"
c_nlfit:: CInt -> FunPtr TVV -> FunPtr TVM -> Double -> Double -> CInt -> CInt -> TVM
-------------------------------------------------------
checkdim1 n _p v
| size v == n = v
| otherwise = error $ "Error: "++ show n
++ " components expected in the result of the function supplied to nlFitting"
checkdim2 n p m
| rows m == n && cols m == p = m
| otherwise = error $ "Error: "++ show n ++ "x" ++ show p
++ " Jacobian expected in nlFitting"
------------------------------------------------------------
err (model,deriv) dat vsol = zip sol errs where
sol = toList vsol
c = max 1 (chi/sqrt (fromIntegral dof))
dof = length dat - (rows cov)
chi = norm_2 (fromList $ cost (resMs model) dat sol)
js = fromLists $ jacobian (resDs deriv) dat sol
cov = inv $ tr js <> js
errs = toList $ scalar c * sqrt (takeDiag cov)
-- | Higher level interface to 'nlFitting' 'LevenbergMarquardtScaled'. The optimization function and
-- Jacobian are automatically built from a model f vs x = y and its derivatives, and a list of
-- instances (x, (y,sigma)) to be fitted.
fitModelScaled
:: Double -- ^ absolute tolerance
-> Double -- ^ relative tolerance
-> Int -- ^ maximum number of iterations allowed
-> ([Double] -> x -> [Double], [Double] -> x -> [[Double]]) -- ^ (model, derivatives)
-> [(x, ([Double], Double))] -- ^ instances
-> [Double] -- ^ starting point
-> ([(Double, Double)], Matrix Double) -- ^ (solution, error) and optimization path
fitModelScaled epsabs epsrel maxit (model,deriv) dt xin = (err (model,deriv) dt sol, path) where
(sol,path) = nlFitting LevenbergMarquardtScaled epsabs epsrel maxit
(fromList . cost (resMs model) dt . toList)
(fromLists . jacobian (resDs deriv) dt . toList)
(fromList xin)
-- | Higher level interface to 'nlFitting' 'LevenbergMarquardt'. The optimization function and
-- Jacobian are automatically built from a model f vs x = y and its derivatives, and a list of
-- instances (x,y) to be fitted.
fitModel :: Double -- ^ absolute tolerance
-> Double -- ^ relative tolerance
-> Int -- ^ maximum number of iterations allowed
-> ([Double] -> x -> [Double], [Double] -> x -> [[Double]]) -- ^ (model, derivatives)
-> [(x, [Double])] -- ^ instances
-> [Double] -- ^ starting point
-> ([Double], Matrix Double) -- ^ solution and optimization path
fitModel epsabs epsrel maxit (model,deriv) dt xin = (toList sol, path) where
(sol,path) = nlFitting LevenbergMarquardt epsabs epsrel maxit
(fromList . cost (resM model) dt . toList)
(fromLists . jacobian (resD deriv) dt . toList)
(fromList xin)
cost model ds vs = concatMap (model vs) ds
jacobian modelDer ds vs = concatMap (modelDer vs) ds
-- | Model-to-residual for association pairs with sigma, to be used with 'fitModel'.
resMs :: ([Double] -> x -> [Double]) -> [Double] -> (x, ([Double], Double)) -> [Double]
resMs m v = \(x,(ys,s)) -> zipWith (g s) (m v x) ys where g s a b = (a-b)/s
-- | Associated derivative for 'resMs'.
resDs :: ([Double] -> x -> [[Double]]) -> [Double] -> (x, ([Double], Double)) -> [[Double]]
resDs m v = \(x,(_,s)) -> map (map (/s)) (m v x)
-- | Model-to-residual for association pairs, to be used with 'fitModel'. It is equivalent
-- to 'resMs' with all sigmas = 1.
resM :: ([Double] -> x -> [Double]) -> [Double] -> (x, [Double]) -> [Double]
resM m v = \(x,ys) -> zipWith g (m v x) ys where g a b = a-b
-- | Associated derivative for 'resM'.
resD :: ([Double] -> x -> [[Double]]) -> [Double] -> (x, [Double]) -> [[Double]]
resD m v = \(x,_) -> m v x
|