1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
{-# OPTIONS_GHC -fno-warn-unused-imports -fno-warn-incomplete-patterns #-}
{- |
Module : Numeric.GLS.Tests
Copyright : (c) Alberto Ruiz 2014
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
Tests for GSL bindings.
-}
module Numeric.GSL.Tests(
runTests
) where
import Control.Monad(when)
import System.Exit (exitFailure)
import Test.HUnit (runTestTT, failures, Test(..), errors)
import Numeric.LinearAlgebra.HMatrix
import Numeric.GSL
import Numeric.GSL.SimulatedAnnealing
import Numeric.LinearAlgebra.Tests (qCheck, utest)
import Numeric.LinearAlgebra.Tests.Properties ((|~|), (~~), (~=))
---------------------------------------------------------------------
fittingTest = utest "levmar" (ok1 && ok2)
where
xs = map return [0 .. 39]
sigma = 0.1
ys = map return $ toList $ fromList (map (head . expModel [5,0.1,1]) xs)
+ scalar sigma * (randomVector 0 Gaussian 40)
dats = zip xs (zip ys (repeat sigma))
dat = zip xs ys
expModel [a,lambda,b] [t] = [a * exp (-lambda * t) + b]
expModelDer [a,lambda,_b] [t] = [[exp (-lambda * t), -t * a * exp(-lambda*t) , 1]]
sols = fst $ fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dats [1,0,0]
sol = fst $ fitModel 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]
ok1 = and (zipWith f sols [5,0.1,1]) where f (x,d) r = abs (x-r)<2*d
ok2 = norm_2 (fromList (map fst sols) - fromList sol) < 1E-5
---------------------------------------------------------------------
odeTest = utest "ode" (last (toLists sol) ~~ newsol)
where
sol = odeSolveV RK8pd 1E-6 1E-6 0 (l2v $ vanderpol 10) (fromList [1,0]) ts
ts = linspace 101 (0,100)
l2v f = \t -> fromList . f t . toList
vanderpol mu _t [x,y] = [y, -x + mu * y * (1-x**2) ]
newsol = [-1.758888036617841, 8.364349410519058e-2]
-- oldsol = [-1.7588880332411019, 8.364348908711941e-2]
---------------------------------------------------------------------
rootFindingTest = TestList [ utest "root Hybrids" (fst sol1 ~~ [1,1])
, utest "root Newton" (rows (snd sol2) == 2)
]
where sol1 = root Hybrids 1E-7 30 (rosenbrock 1 10) [-10,-5]
sol2 = rootJ Newton 1E-7 30 (rosenbrock 1 10) (jacobian 1 10) [-10,-5]
rosenbrock a b [x,y] = [ a*(1-x), b*(y-x**2) ]
jacobian a b [x,_y] = [ [-a , 0]
, [-2*b*x, b] ]
--------------------------------------------------------------------
interpolationTest = TestList [
utest "interpolation evaluateV" (esol ~= ev)
, utest "interpolation evaluate" (esol ~= eval)
, utest "interpolation evaluateDerivativeV" (desol ~= dev)
, utest "interpolation evaluateDerivative" (desol ~= de)
, utest "interpolation evaluateDerivative2V" (d2esol ~= d2ev)
, utest "interpolation evaluateDerivative2" (d2esol ~= d2e)
, utest "interpolation evaluateIntegralV" (intesol ~= intev)
, utest "interpolation evaluateIntegral" (intesol ~= inte)
]
where
xtest = 2.2
applyVec f = f Akima xs ys xtest
applyList f = f Akima (zip xs' ys') xtest
esol = xtest**2
ev = applyVec evaluateV
eval = applyList evaluate
desol = 2*xtest
dev = applyVec evaluateDerivativeV
de = applyList evaluateDerivative
d2esol = 2
d2ev = applyVec evaluateDerivative2V
d2e = applyList evaluateDerivative2
intesol = 1/3 * xtest**3
intev = evaluateIntegralV Akima xs ys 0 xtest
inte = evaluateIntegral Akima (zip xs' ys') (0, xtest)
xs' = [-1..10]
ys' = map (**2) xs'
xs = vector xs'
ys = vector ys'
---------------------------------------------------------------------
simanTest = TestList [
-- We use a slightly more relaxed tolerance here because the
-- simulated annealer is randomized
utest "simulated annealing manual example" $ abs (result - 1.3631300) < 1e-6
]
where
-- This is the example from the GSL manual.
result = simanSolve 0 1 exampleParams 15.5 exampleE exampleM exampleS Nothing
exampleParams = SimulatedAnnealingParams 200 10000 1.0 1.0 0.008 1.003 2.0e-6
exampleE x = exp (-(x - 1)**2) * sin (8 * x)
exampleM x y = abs $ x - y
exampleS rands stepSize current = (rands ! 0) * 2 * stepSize - stepSize + current
---------------------------------------------------------------------
minimizationTest = TestList
[ utest "minimization conjugatefr" (minim1 f df [5,7] ~~ [1,2])
, utest "minimization nmsimplex2" (minim2 f [5,7] `elem` [24,25])
]
where f [x,y] = 10*(x-1)**2 + 20*(y-2)**2 + 30
df [x,y] = [20*(x-1), 40*(y-2)]
minim1 g dg ini = fst $ minimizeD ConjugateFR 1E-3 30 1E-2 1E-4 g dg ini
minim2 g ini = rows $ snd $ minimize NMSimplex2 1E-2 30 [1,1] g ini
---------------------------------------------------------------------
derivTest = abs (d (\x-> x * d (\y-> x+y) 1) 1 - 1) < 1E-10
where d f x = fst $ derivCentral 0.01 f x
---------------------------------------------------------------------
quad f a b = fst $ integrateQAGS 1E-9 100 f a b
-- A multiple integral can be easily defined using partial application
quad2 f a b g1 g2 = quad h a b
where h x = quad (f x) (g1 x) (g2 x)
volSphere r = 8 * quad2 (\x y -> sqrt (r*r-x*x-y*y))
0 r (const 0) (\x->sqrt (r*r-x*x))
---------------------------------------------------------------------
-- besselTest = utest "bessel_J0_e" ( abs (r-expected) < e )
-- where (r,e) = bessel_J0_e 5.0
-- expected = -0.17759677131433830434739701
-- exponentialTest = utest "exp_e10_e" ( abs (v*10^e - expected) < 4E-2 )
-- where (v,e,_err) = exp_e10_e 30.0
-- expected = exp 30.0
--------------------------------------------------------------------
polyEval cs x = foldr (\c ac->ac*x+c) 0 cs
polySolveProp p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))
-- | All tests must pass with a maximum dimension of about 20
-- (some tests may fail with bigger sizes due to precision loss).
runTests :: Int -- ^ maximum dimension
-> IO ()
runTests n = do
let test p = qCheck n p
putStrLn "------ fft"
test (\v -> ifft (fft v) |~| v)
c <- runTestTT $ TestList
[ fittingTest
, odeTest
, rootFindingTest
, minimizationTest
, interpolationTest
, simanTest
, utest "deriv" derivTest
, utest "integrate" (abs (volSphere 2.5 - 4/3*pi*2.5**3) < 1E-8)
, utest "polySolve" (polySolveProp [1,2,3,4])
]
when (errors c + failures c > 0) exitFailure
return ()
|