summaryrefslogtreecommitdiff
path: root/packages/tests/src/Numeric/GSL/Tests.hs
blob: 9dff6f5fd7a8e95e0387c4aa3ec7ce81595f4ba3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
{-# OPTIONS_GHC -fno-warn-unused-imports -fno-warn-incomplete-patterns #-}
{- |
Module      :  Numeric.GLS.Tests
Copyright   :  (c) Alberto Ruiz 2014
License     :  BSD3
Maintainer  :  Alberto Ruiz
Stability   :  provisional

Tests for GSL bindings.

-}

module Numeric.GSL.Tests(
    runTests
) where

import Control.Monad(when)
import System.Exit (exitFailure)

import Test.HUnit (runTestTT, failures, Test(..), errors)

import Numeric.LinearAlgebra
import Numeric.GSL
import Numeric.LinearAlgebra.Tests (qCheck, utest)
import Numeric.LinearAlgebra.Tests.Properties ((|~|), (~~))

---------------------------------------------------------------------

fittingTest = utest "levmar" (ok1 && ok2)
    where
    xs = map return [0 .. 39]
    sigma = 0.1
    ys = map return $ toList $ fromList (map (head . expModel [5,0.1,1]) xs)
                    + scalar sigma * (randomVector 0 Gaussian 40)
    dats = zip xs (zip ys (repeat sigma))
    dat = zip xs ys

    expModel [a,lambda,b] [t] = [a * exp (-lambda * t) + b]
    expModelDer [a,lambda,_b] [t] = [[exp (-lambda * t), -t * a * exp(-lambda*t) , 1]]

    sols = fst $ fitModelScaled 1E-4 1E-4 20 (expModel, expModelDer) dats [1,0,0]
    sol = fst $ fitModel 1E-4 1E-4 20 (expModel, expModelDer) dat [1,0,0]

    ok1 = and (zipWith f sols [5,0.1,1]) where f (x,d) r = abs (x-r)<2*d
    ok2 = norm2 (fromList (map fst sols) - fromList sol) < 1E-5

---------------------------------------------------------------------

odeTest = utest "ode" (last (toLists sol) ~~ newsol)
  where
    sol = odeSolveV RK8pd 1E-6 1E-6 0 (l2v $ vanderpol 10) (fromList [1,0]) ts
    ts = linspace 101 (0,100)
    l2v f = \t -> fromList  . f t . toList
    vanderpol mu _t [x,y] = [y, -x + mu * y * (1-x**2) ]
    newsol = [-1.758888036617841,  8.364349410519058e-2]
    -- oldsol = [-1.7588880332411019, 8.364348908711941e-2]

---------------------------------------------------------------------

rootFindingTest = TestList [ utest "root Hybrids" (fst sol1 ~~ [1,1])
                           , utest "root Newton"  (rows (snd sol2) == 2)
                           ]
    where sol1 = root Hybrids 1E-7 30 (rosenbrock 1 10) [-10,-5]
          sol2 = rootJ Newton 1E-7 30 (rosenbrock 1 10) (jacobian 1 10) [-10,-5]
          rosenbrock a b [x,y] = [ a*(1-x), b*(y-x**2) ]
          jacobian a b [x,_y] = [ [-a    , 0]
                                , [-2*b*x, b] ]

---------------------------------------------------------------------

minimizationTest = TestList
    [ utest "minimization conjugatefr" (minim1 f df [5,7] ~~ [1,2])
    , utest "minimization nmsimplex2"  (minim2 f [5,7] `elem` [24,25])
    ]
    where f [x,y] = 10*(x-1)**2 + 20*(y-2)**2 + 30
          df [x,y] = [20*(x-1), 40*(y-2)]
          minim1 g dg ini = fst $ minimizeD ConjugateFR 1E-3 30 1E-2 1E-4 g dg ini
          minim2 g ini = rows $ snd $ minimize NMSimplex2 1E-2 30 [1,1] g ini

---------------------------------------------------------------------

derivTest = abs (d (\x-> x * d (\y-> x+y) 1) 1 - 1) < 1E-10
    where d f x = fst $ derivCentral 0.01 f x

---------------------------------------------------------------------

quad f a b = fst $ integrateQAGS 1E-9 100 f a b

-- A multiple integral can be easily defined using partial application
quad2 f a b g1 g2 = quad h a b
    where h x = quad (f x) (g1 x) (g2 x)

volSphere r = 8 * quad2 (\x y -> sqrt (r*r-x*x-y*y)) 
                        0 r (const 0) (\x->sqrt (r*r-x*x))

---------------------------------------------------------------------

-- besselTest = utest "bessel_J0_e" ( abs (r-expected) < e )
--     where (r,e) = bessel_J0_e 5.0
--           expected = -0.17759677131433830434739701

-- exponentialTest = utest "exp_e10_e" ( abs (v*10^e - expected) < 4E-2 )
--     where (v,e,_err) = exp_e10_e 30.0
--           expected = exp 30.0

--------------------------------------------------------------------

polyEval cs x = foldr (\c ac->ac*x+c) 0 cs

polySolveProp p = length p <2 || last p == 0|| 1E-8 > maximum (map magnitude $ map (polyEval (map (:+0) p)) (polySolve p))


-- | All tests must pass with a maximum dimension of about 20
--  (some tests may fail with bigger sizes due to precision loss).
runTests :: Int  -- ^ maximum dimension
         -> IO ()
runTests n = do
    let test p = qCheck n p
    putStrLn "------ fft"
    test (\v -> ifft (fft v) |~| v)
    c <- runTestTT $ TestList
        [ fittingTest
        , odeTest
        , rootFindingTest
        , minimizationTest
        , utest "deriv" derivTest
        , utest "integrate" (abs (volSphere 2.5 - 4/3*pi*2.5**3) < 1E-8)
        , utest "polySolve" (polySolveProp [1,2,3,4])
        ]
    when (errors c + failures c > 0) exitFailure
    return ()