1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
|
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -fno-warn-unused-imports -fno-warn-incomplete-patterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ViewPatterns #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests
Copyright : (c) Alberto Ruiz 2007-14
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
Some tests.
-}
module Numeric.LinearAlgebra.Tests(
-- module Numeric.LinearAlgebra.Tests.Instances,
-- module Numeric.LinearAlgebra.Tests.Properties,
qCheck,
utest,
runTests,
runBenchmarks
-- , findNaN
--, runBigTests
) where
import Numeric.LinearAlgebra hiding (unitary)
import Numeric.LinearAlgebra.Devel
import Numeric.LinearAlgebra.Static(L)
import Numeric.LinearAlgebra.Tests.Instances
import Numeric.LinearAlgebra.Tests.Properties
import Test.HUnit hiding ((~:),test,Testable,State)
import System.Info
import Data.List(foldl1')
import Prelude hiding ((^))
import qualified Prelude
import System.CPUTime
import System.Exit
import Text.Printf
import Numeric.LinearAlgebra.Devel(unsafeFromForeignPtr,unsafeToForeignPtr)
import Control.Arrow((***))
import Debug.Trace
import Control.Monad(when)
import Control.Applicative
import Control.Monad(ap)
import Control.DeepSeq ( NFData(..) )
import Test.QuickCheck(Arbitrary,arbitrary,coarbitrary,choose,vector
,sized,classify,Testable,Property
,quickCheckWithResult,maxSize,stdArgs,shrink)
import qualified Test.QuickCheck as T
import Test.QuickCheck.Test(isSuccess)
--eps = peps :: Double
--i = 0:+1 :: Complex Double
qCheck n x = do
r <- quickCheckWithResult stdArgs {maxSize = n} x
when (not $ isSuccess r) (exitFailure)
a ^ b = a Prelude.^ (b :: Int)
utest str b = TestCase $ assertBool str b
feye n = flipud (ident n) :: Matrix Double
-----------------------------------------------------------
detTest1 = det m == 26
&& det mc == 38 :+ (-3)
&& det (feye 2) == -1
where
m = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, 4 :: Double
]
mc = (3><3)
[ 1, 2, 3
, 4, 5, 7
, 2, 8, iC
]
detTest2 = inv1 |~| inv2 && [det1] ~~ [det2]
where
m = complex (feye 6)
inv1 = inv m
det1 = det m
(inv2,(lda,sa)) = invlndet m
det2 = sa * exp lda
---------------------------------------------------------------------
nd1 = (3><3) [ 1/2, 1/4, 1/4
, 0/1, 1/2, 1/4
, 1/2, 1/4, 1/2 :: Double]
nd2 = (2><2) [1, 0, 1, 1:: Complex Double]
expmTest1 = expm nd1 :~14~: (3><3)
[ 1.762110887278176
, 0.478085470590435
, 0.478085470590435
, 0.104719410945666
, 1.709751181805343
, 0.425725765117601
, 0.851451530235203
, 0.530445176063267
, 1.814470592751009 ]
expmTest2 = expm nd2 :~15~: (2><2)
[ 2.718281828459045
, 0.000000000000000
, 2.718281828459045
, 2.718281828459045 ]
-----------------------------------------------------
mbCholTest = utest "mbCholTest" (ok1 && ok2) where
m1 = (2><2) [2,5,5,8 :: Double]
m2 = (2><2) [3,5,5,9 :: Complex Double]
ok1 = mbChol (trustSym m1) == Nothing
ok2 = mbChol (trustSym m2) == Just (chol $ trustSym m2)
---------------------------------------------------------------------
randomTestGaussian = c :~1~: snd (meanCov dat) where
a = (3><3) [1,2,3,
2,4,0,
-2,2,1]
m = 3 |> [1,2,3]
c = mTm a
dat = gaussianSample 7 (10^6) m c
randomTestUniform = c :~1~: snd (meanCov dat) where
c = diag $ 3 |> map ((/12).(^2)) [1,2,3]
dat = uniformSample 7 (10^6) [(0,1),(1,3),(3,6)]
---------------------------------------------------------------------
rot :: Double -> Matrix Double
rot a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
rotTest = fun (10^5) :~11~: rot 5E4
where fun n = foldl1' (<>) (map rot angles)
where angles = toList $ linspace n (0,1)
---------------------------------------------------------------------
-- vector <= 0.6.0.2 bug discovered by Patrick Perry
-- http://trac.haskell.org/vector/ticket/31
offsetTest = y == y' where
x = fromList [0..3 :: Double]
y = subVector 1 3 x
(f,o,n) = unsafeToForeignPtr y
y' = unsafeFromForeignPtr f o n
---------------------------------------------------------------------
normsVTest = TestList [
utest "normv2CD" $ norm2PropC v
-- , utest "normv2CF" $ norm2PropC (single v)
#ifndef NONORMVTEST
, utest "normv2D" $ norm2PropR x
-- , utest "normv2F" $ norm2PropR (single x)
#endif
, utest "normv1CD" $ norm_1 v == 8
-- , utest "normv1CF" $ norm_1 (single v) == 8
, utest "normv1D" $ norm_1 x == 6
-- , utest "normv1F" $ norm_1 (single x) == 6
, utest "normvInfCD" $ norm_Inf v == 5
-- , utest "normvInfCF" $ norm_Inf (single v) == 5
, utest "normvInfD" $ norm_Inf x == 3
-- , utest "normvInfF" $ norm_Inf (single x) == 3
] where v = fromList [1,-2,3:+4] :: Vector (Complex Double)
x = fromList [1,2,-3] :: Vector Double
#ifndef NONORMVTEST
norm2PropR a = norm_2 a =~= sqrt (udot a a)
#endif
norm2PropC a = norm_2 a =~= realPart (sqrt (a `dot` a))
a =~= b = fromList [a] |~| fromList [b]
normsMTest = TestList [
utest "norm2mCD" $ norm_2 v =~= 8.86164970498005
-- , utest "norm2mCF" $ norm_2 (single v) =~= 8.86164970498005
, utest "norm2mD" $ norm_2 x =~= 5.96667765076216
-- , utest "norm2mF" $ norm_2 (single x) =~= 5.96667765076216
, utest "norm1mCD" $ norm_1 v == 9
-- , utest "norm1mCF" $ norm_1 (single v) == 9
, utest "norm1mD" $ norm_1 x == 7
-- , utest "norm1mF" $ norm_1 (single x) == 7
, utest "normmInfCD" $ norm_Inf v == 12
-- , utest "normmInfCF" $ norm_Inf (single v) == 12
, utest "normmInfD" $ norm_Inf x == 8
-- , utest "normmInfF" $ norm_Inf (single x) == 8
, utest "normmFroCD" $ norm_Frob v =~= 8.88819441731559
-- , utest "normmFroCF" $ norm_Frob (single v) =~~= 8.88819441731559
, utest "normmFroD" $ norm_Frob x =~= 6.24499799839840
-- , utest "normmFroF" $ norm_Frob (single x) =~~= 6.24499799839840
] where v = (2><2) [1,-2*iC,3:+4,7] :: Matrix (Complex Double)
x = (2><2) [1,2,-3,5] :: Matrix Double
a =~= b = fromList [a] :~10~: fromList [b]
-- a =~~= b = fromList [a] :~5~: fromList [b]
---------------------------------------------------------------------
sumprodTest = TestList [
utest "sumCD" $ sumElements z == 6
, utest "sumCF" $ sumElements (single z) == 6
, utest "sumD" $ sumElements v == 6
, utest "sumF" $ sumElements (single v) == 6
, utest "prodCD" $ prodProp z
, utest "prodCF" $ prodProp (single z)
, utest "prodD" $ prodProp v
, utest "prodF" $ prodProp (single v)
] where v = fromList [1,2,3] :: Vector Double
z = fromList [1,2-iC,3+iC]
prodProp x = prodElements x == product (toList x)
---------------------------------------------------------------------
chainTest = utest "chain" $ foldl1' (<>) ms |~| optimiseMult ms where
ms = [ diag (fromList [1,2,3 :: Double])
, konst 3 (3,5)
, (5><10) [1 .. ]
, konst 5 (10,2)
]
---------------------------------------------------------------------
conjuTest m = cmap conjugate (flatten (conj (tr m))) == flatten (tr m)
---------------------------------------------------------------------
newtype State s a = State { runState :: s -> (a,s) }
instance Functor (State s)
where
fmap f x = pure f <*> x
instance Applicative (State s)
where
pure = return
(<*>) = ap
instance Monad (State s) where
return a = State $ \s -> (a,s)
m >>= f = State $ \s -> let (a,s') = runState m s
in runState (f a) s'
state_get :: State s s
state_get = State $ \s -> (s,s)
state_put :: s -> State s ()
state_put s = State $ \_ -> ((),s)
evalState :: State s a -> s -> a
evalState m s = let (a,s') = runState m s
in seq s' a
newtype MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }
instance Monad m => Functor (MaybeT m)
where
fmap f x = pure f <*> x
instance Monad m => Applicative (MaybeT m)
where
pure = return
(<*>) = ap
instance Monad m => Monad (MaybeT m) where
return a = MaybeT $ return $ Just a
m >>= f = MaybeT $ do
res <- runMaybeT m
case res of
Nothing -> return Nothing
Just r -> runMaybeT (f r)
fail _ = MaybeT $ return Nothing
lift_maybe m = MaybeT $ do
res <- m
return $ Just res
-- apply a test to successive elements of a vector, evaluates to true iff test passes for all pairs
--successive_ :: Storable a => (a -> a -> Bool) -> Vector a -> Bool
successive_ t v = maybe False (\_ -> True) $ evalState (runMaybeT (mapVectorM_ stp (subVector 1 (size v - 1) v))) (v ! 0)
where stp e = do
ep <- lift_maybe $ state_get
if t e ep
then lift_maybe $ state_put e
else (fail "successive_ test failed")
-- operate on successive elements of a vector and return the resulting vector, whose length 1 less than that of the input
--successive :: (Storable a, Storable b) => (a -> a -> b) -> Vector a -> Vector b
successive f v = evalState (mapVectorM stp (subVector 1 (size v - 1) v)) (v ! 0)
where stp e = do
ep <- state_get
state_put e
return $ f ep e
succTest = utest "successive" $
successive_ (>) (fromList [1 :: Double,2,3,4]) == True
&& successive_ (>) (fromList [1 :: Double,3,2,4]) == False
&& successive (+) (fromList [1..10 :: Double]) == 9 |> [3,5,7,9,11,13,15,17,19]
---------------------------------------------------------------------
findAssocTest = utest "findAssoc" ok
where
ok = m1 == m2
m1 = assoc (6,6) 7 $ zip (find (>0) (ident 5 :: Matrix Float)) [10 ..] :: Matrix Double
m2 = diagRect 7 (fromList[10..14]) 6 6
---------------------------------------------------------------------
condTest = utest "cond" ok
where
ok = step v * v == cond v 0 0 0 v
v = fromList [-7 .. 7 ] :: Vector Float
---------------------------------------------------------------------
conformTest = utest "conform" ok
where
ok = 1 + row [1,2,3] + col [10,20,30,40] + (4><3) [1..]
== (4><3) [13,15,17
,26,28,30
,39,41,43
,52,54,56]
---------------------------------------------------------------------
accumTest = utest "accum" ok
where
x = ident 3 :: Matrix Double
ok = accum x (+) [((1,2),7), ((2,2),3)]
== (3><3) [1,0,0
,0,1,7
,0,0,4]
&&
toList (flatten x) == [1,0,0,0,1,0,0,0,1]
--------------------------------------------------------------------------------
convolutionTest = utest "convolution" ok
where
-- a = fromList [1..10] :: Vector Double
b = fromList [1..3] :: Vector Double
c = (5><7) [1..] :: Matrix Double
-- d = (3><3) [0,-1,0,-1,4,-1,0,-1,0] :: Matrix Double
ok = separable (corr b) c == corr2 (outer b b) c
&& separable (conv b) c == conv2 (outer b b) c
--------------------------------------------------------------------------------
sparseTest = utest "sparse" (fst $ checkT (undefined :: GMatrix))
--------------------------------------------------------------------------------
staticTest = utest "static" (fst $ checkT (undefined :: L 3 5))
--------------------------------------------------------------------------------
intTest = utest "int ops" (fst $ checkT (undefined :: Matrix I))
--------------------------------------------------------------------------------
modularTest = utest "modular ops" (fst $ checkT (undefined :: Matrix (Mod 13 I)))
--------------------------------------------------------------------------------
indexProp g f x = a1 == g a2 && a2 == a3 && b1 == g b2 && b2 == b3
where
l = map g (toList (f x))
a1 = maximum l
b1 = minimum l
a2 = x `atIndex` maxIndex x
b2 = x `atIndex` minIndex x
a3 = maxElement x
b3 = minElement x
--------------------------------------------------------------------------------
sliceTest = utest "slice test" $ and
[ testSlice (chol . trustSym) (gen 5 :: Matrix R)
, testSlice (chol . trustSym) (gen 5 :: Matrix C)
, testSlice qr (rec :: Matrix R)
, testSlice qr (rec :: Matrix C)
, testSlice hess (agen 5 :: Matrix R)
, testSlice hess (agen 5 :: Matrix C)
, testSlice schur (agen 5 :: Matrix R)
, testSlice schur (agen 5 :: Matrix C)
, testSlice lu (agen 5 :: Matrix R)
, testSlice lu (agen 5 :: Matrix C)
, testSlice (luSolve (luPacked (agen 5 :: Matrix R))) (agen 5)
, testSlice (luSolve (luPacked (agen 5 :: Matrix C))) (agen 5)
, test_lus (agen 5 :: Matrix R)
, test_lus (agen 5 :: Matrix C)
, testSlice eig (agen 5 :: Matrix R)
, testSlice eig (agen 5 :: Matrix C)
, testSlice (eigSH . trustSym) (gen 5 :: Matrix R)
, testSlice (eigSH . trustSym) (gen 5 :: Matrix C)
, testSlice eigenvalues (agen 5 :: Matrix R)
, testSlice eigenvalues (agen 5 :: Matrix C)
, testSlice (eigenvaluesSH . trustSym) (gen 5 :: Matrix R)
, testSlice (eigenvaluesSH . trustSym) (gen 5 :: Matrix C)
, testSlice svd (rec :: Matrix R)
, testSlice thinSVD (rec :: Matrix R)
, testSlice compactSVD (rec :: Matrix R)
, testSlice leftSV (rec :: Matrix R)
, testSlice rightSV (rec :: Matrix R)
, testSlice singularValues (rec :: Matrix R)
, testSlice svd (rec :: Matrix C)
, testSlice thinSVD (rec :: Matrix C)
, testSlice compactSVD (rec :: Matrix C)
, testSlice leftSV (rec :: Matrix C)
, testSlice rightSV (rec :: Matrix C)
, testSlice singularValues (rec :: Matrix C)
, testSlice (linearSolve (agen 5:: Matrix R)) (agen 5)
, testSlice (flip linearSolve (agen 5:: Matrix R)) (agen 5)
, testSlice (linearSolve (agen 5:: Matrix C)) (agen 5)
, testSlice (flip linearSolve (agen 5:: Matrix C)) (agen 5)
, testSlice (linearSolveLS (ogen 5:: Matrix R)) (ogen 5)
, testSlice (flip linearSolveLS (ogen 5:: Matrix R)) (ogen 5)
, testSlice (linearSolveLS (ogen 5:: Matrix C)) (ogen 5)
, testSlice (flip linearSolveLS (ogen 5:: Matrix C)) (ogen 5)
, testSlice (linearSolveSVD (ogen 5:: Matrix R)) (ogen 5)
, testSlice (flip linearSolveSVD (ogen 5:: Matrix R)) (ogen 5)
, testSlice (linearSolveSVD (ogen 5:: Matrix C)) (ogen 5)
, testSlice (flip linearSolveSVD (ogen 5:: Matrix C)) (ogen 5)
, testSlice (linearSolveLS (ugen 5:: Matrix R)) (ugen 5)
, testSlice (flip linearSolveLS (ugen 5:: Matrix R)) (ugen 5)
, testSlice (linearSolveLS (ugen 5:: Matrix C)) (ugen 5)
, testSlice (flip linearSolveLS (ugen 5:: Matrix C)) (ugen 5)
, testSlice (linearSolveSVD (ugen 5:: Matrix R)) (ugen 5)
, testSlice (flip linearSolveSVD (ugen 5:: Matrix R)) (ugen 5)
, testSlice (linearSolveSVD (ugen 5:: Matrix C)) (ugen 5)
, testSlice (flip linearSolveSVD (ugen 5:: Matrix C)) (ugen 5)
, testSlice ((<>) (ogen 5:: Matrix R)) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix R)) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix C)) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix C)) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix Float)) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix Float)) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix (Complex Float))) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix (Complex Float))) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix I)) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix I)) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix Z)) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix Z)) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix (I ./. 7))) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix (I ./. 7))) (ogen 5)
, testSlice ((<>) (ogen 5:: Matrix (Z ./. 7))) (gen 5)
, testSlice (flip (<>) (gen 5:: Matrix (Z ./. 7))) (ogen 5)
, testSlice (flip cholSolve (agen 5:: Matrix R)) (chol $ trustSym $ gen 5)
, testSlice (flip cholSolve (agen 5:: Matrix C)) (chol $ trustSym $ gen 5)
, testSlice (cholSolve (chol $ trustSym $ gen 5:: Matrix R)) (agen 5)
, testSlice (cholSolve (chol $ trustSym $ gen 5:: Matrix C)) (agen 5)
, ok_qrgr (rec :: Matrix R)
, ok_qrgr (rec :: Matrix C)
, testSlice (test_qrgr 4 tau1) qrr1
, testSlice (test_qrgr 4 tau2) qrr2
]
where
QR qrr1 tau1 = qrRaw (rec :: Matrix R)
QR qrr2 tau2 = qrRaw (rec :: Matrix C)
test_qrgr n t x = qrgr n (QR x t)
ok_qrgr x = simeq 1E-15 q q'
where
(q,_) = qr x
atau = qrRaw x
q' = qrgr (rows q) atau
simeq eps a b = not $ magnit eps (norm_1 $ flatten (a-b))
test_lus m = testSlice f lup
where
f x = luSolve (LU x p) m
(LU lup p) = luPacked m
gen :: Numeric t => Int -> Matrix t
gen n = diagRect 1 (konst 5 n) n n
agen :: (Numeric t, Num (Vector t))=> Int -> Matrix t
agen n = gen n + fromInt ((n><n)[0..])
ogen :: (Numeric t, Num (Vector t))=> Int -> Matrix t
ogen n = gen n === gen n
ugen :: (Numeric t, Num (Vector t))=> Int -> Matrix t
ugen n = takeRows 3 (gen n)
rec :: Numeric t => Matrix t
rec = subMatrix (0,0) (4,5) (gen 5)
testSlice f x@(size->sz@(r,c)) = all (==f x) (map f (g y1 ++ g y2))
where
subm = subMatrix
g y = [ subm (a*r,b*c) sz y | a <-[0..2], b <- [0..2]]
h z = fromBlocks (replicate 3 (replicate 3 z))
y1 = h x
y2 = (tr . h . tr) x
--------------------------------------------------------------------------------
-- | All tests must pass with a maximum dimension of about 20
-- (some tests may fail with bigger sizes due to precision loss).
runTests :: Int -- ^ maximum dimension
-> IO ()
runTests n = do
let test :: forall t . T.Testable t => t -> IO ()
test p = qCheck n p
putStrLn "------ index"
test( \m -> indexProp id flatten (single (m :: RM)) )
test( \v -> indexProp id id (single (v :: Vector Double)) )
test( \m -> indexProp id flatten (m :: RM) )
test( \v -> indexProp id id (v :: Vector Double) )
test( \m -> indexProp magnitude flatten (single (m :: CM)) )
test( \v -> indexProp magnitude id (single (v :: Vector (Complex Double))) )
test( \m -> indexProp magnitude flatten (m :: CM) )
test( \v -> indexProp magnitude id (v :: Vector (Complex Double)) )
putStrLn "------ mult Double"
test (multProp1 10 . rConsist)
test (multProp1 10 . cConsist)
test (multProp2 10 . rConsist)
test (multProp2 10 . cConsist)
-- putStrLn "------ mult Float"
-- test (multProp1 6 . (single *** single) . rConsist)
-- test (multProp1 6 . (single *** single) . cConsist)
-- test (multProp2 6 . (single *** single) . rConsist)
-- test (multProp2 6 . (single *** single) . cConsist)
putStrLn "------ sub-trans"
test (subProp . rM)
test (subProp . cM)
putStrLn "------ ctrans"
test (conjuTest . cM)
test (conjuTest . zM)
putStrLn "------ lu"
test (luProp . rM)
test (luProp . cM)
putStrLn "------ inv (linearSolve)"
test (invProp . rSqWC)
test (invProp . cSqWC)
putStrLn "------ luSolve"
test (linearSolveProp (luSolve.luPacked) . rSqWC)
test (linearSolveProp (luSolve.luPacked) . cSqWC)
putStrLn "------ ldlSolve"
test (linearSolvePropH (ldlSolve.ldlPacked) . rSymWC)
test (linearSolvePropH (ldlSolve.ldlPacked) . cSymWC)
putStrLn "------ cholSolve"
test (linearSolveProp (cholSolve.chol.trustSym) . rPosDef)
test (linearSolveProp (cholSolve.chol.trustSym) . cPosDef)
putStrLn "------ luSolveLS"
test (linearSolveProp linearSolveLS . rSqWC)
test (linearSolveProp linearSolveLS . cSqWC)
test (linearSolveProp2 linearSolveLS . rConsist)
test (linearSolveProp2 linearSolveLS . cConsist)
putStrLn "------ pinv (linearSolveSVD)"
test (pinvProp . rM)
test (pinvProp . cM)
putStrLn "------ det"
test (detProp . rSqWC)
test (detProp . cSqWC)
putStrLn "------ svd"
test (svdProp1 . rM)
test (svdProp1 . cM)
test (svdProp1a svd . rM)
test (svdProp1a svd . cM)
-- test (svdProp1a svdRd)
test (svdProp1b svd . rM)
test (svdProp1b svd . cM)
-- test (svdProp1b svdRd)
test (svdProp2 thinSVD . rM)
test (svdProp2 thinSVD . cM)
-- test (svdProp2 thinSVDRd)
-- test (svdProp2 thinSVDCd)
test (svdProp3 . rM)
test (svdProp3 . cM)
test (svdProp4 . rM)
test (svdProp4 . cM)
test (svdProp5a)
test (svdProp5b)
test (svdProp6a)
test (svdProp6b)
test (svdProp7 . rM)
test (svdProp7 . cM)
-- putStrLn "------ svdCd"
#ifdef NOZGESDD
-- putStrLn "Omitted"
#else
-- test (svdProp1a svdCd)
-- test (svdProp1b svdCd)
#endif
putStrLn "------ eig"
test (eigSHProp . rHer)
test (eigSHProp . cHer)
test (eigProp . rSq)
test (eigProp . cSq)
test (eigSHProp2 . rHer)
test (eigSHProp2 . cHer)
test (eigProp2 . rSq)
test (eigProp2 . cSq)
putStrLn "------ nullSpace"
test (nullspaceProp . rM)
test (nullspaceProp . cM)
putStrLn "------ qr"
test (qrProp . rM)
test (qrProp . cM)
test (rqProp . rM)
-- test (rqProp . cM)
test (rqProp1 . cM)
test (rqProp2 . cM)
-- test (rqProp3 . cM)
putStrLn "------ hess"
test (hessProp . rSq)
test (hessProp . cSq)
putStrLn "------ schur"
test (schurProp2 . rSq)
test (schurProp1 . cSq)
putStrLn "------ chol"
test (cholProp . rPosDef)
test (cholProp . cPosDef)
-- test (exactProp . rPosDef)
-- test (exactProp . cPosDef)
putStrLn "------ expm"
test (expmDiagProp . complex. rSqWC)
test (expmDiagProp . cSqWC)
putStrLn "------ vector operations - Double"
test (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::RM))
test $ (\u -> sin u ^ 2 + cos u ^ 2 |~| (1::CM)) . liftMatrix makeUnitary
test (\u -> sin u ** 2 + cos u ** 2 |~| (1::RM))
test (\u -> cos u * tan u |~| sin (u::RM))
test $ (\u -> cos u * tan u |~| sin (u::CM)) . liftMatrix makeUnitary
-- putStrLn "------ vector operations - Float"
-- test (\u -> sin u ^ 2 + cos u ^ 2 |~~| (1::FM))
-- test $ (\u -> sin u ^ 2 + cos u ^ 2 |~~| (1::ZM)) . liftMatrix makeUnitary
-- test (\u -> sin u ** 2 + cos u ** 2 |~~| (1::FM))
-- test (\u -> cos u * tan u |~~| sin (u::FM))
-- test $ (\u -> cos u * tan u |~~| sin (u::ZM)) . liftMatrix makeUnitary
putStrLn "------ read . show"
test (\m -> (m::RM) == read (show m))
test (\m -> (m::CM) == read (show m))
test (\m -> toRows (m::RM) == read (show (toRows m)))
test (\m -> toRows (m::CM) == read (show (toRows m)))
test (\m -> (m::FM) == read (show m))
test (\m -> (m::ZM) == read (show m))
test (\m -> toRows (m::FM) == read (show (toRows m)))
test (\m -> toRows (m::ZM) == read (show (toRows m)))
putStrLn "------ some unit tests"
c <- runTestTT $ TestList
[ utest "1E5 rots" rotTest
, utest "det1" detTest1
, utest "invlndet" detTest2
, utest "expm1" (expmTest1)
, utest "expm2" (expmTest2)
, utest "arith1" $ ((ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| (49 :: RM)
, utest "arith2" $ ((scalar (1+iC) * ones (100,100) * 5 + 2)/0.5 - 7)**2 |~| ( scalar (140*iC-51) :: CM)
, utest "arith3" $ exp (scalar iC * ones(10,10)*pi) + 1 |~| 0
, utest "<\\>" $ (3><2) [2,0,0,3,1,1::Double] <\> 3|>[4,9,5] |~| 2|>[2,3]
-- , utest "gamma" (gamma 5 == 24.0)
-- , besselTest
-- , exponentialTest
, utest "randomGaussian" randomTestGaussian
, utest "randomUniform" randomTestUniform
, utest "buildVector/Matrix" $
complex (10 |> [0::Double ..]) == build 10 id
&& ident 5 == build (5,5) (\r c -> if r==c then 1::Double else 0)
, utest "rank" $ rank ((2><3)[1,0,0,1,5*peps,0::Double]) == 1
&& rank ((2><3)[1,0,0,1,7*peps,0::Double]) == 2
, utest "block" $ fromBlocks [[ident 3,0],[0,ident 4]] == (ident 7 :: CM)
, mbCholTest
, utest "offset" offsetTest
, normsVTest
, normsMTest
, sumprodTest
, chainTest
, succTest
, findAssocTest
, condTest
, conformTest
, accumTest
, convolutionTest
, sparseTest
, staticTest
, intTest
, modularTest
, sliceTest
]
when (errors c + failures c > 0) exitFailure
return ()
-- single precision approximate equality
-- infixl 4 |~~|
-- a |~~| b = a :~6~: b
makeUnitary v | realPart n > 1 = v / scalar n
| otherwise = v
where n = sqrt (v `dot` v)
-- -- | Some additional tests on big matrices. They take a few minutes.
-- runBigTests :: IO ()
-- runBigTests = undefined
{-
-- | testcase for nonempty fpu stack
findNaN :: Int -> Bool
findNaN n = all (bugProp . eye) (take n $ cycle [1..20])
where eye m = ident m :: Matrix ( Double)
-}
--------------------------------------------------------------------------------
-- | Performance measurements.
runBenchmarks :: IO ()
runBenchmarks = do
solveBench
subBench
mkVecBench
multBench
cholBench
luBench
luBench_2
svdBench
eigBench
putStrLn ""
--------------------------------
time msg act = do
putStr (msg++" ")
t0 <- getCPUTime
act `seq` putStr " "
t1 <- getCPUTime
printf "%6.2f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
return ()
timeR msg act = do
putStr (msg++" ")
t0 <- getCPUTime
putStr (show act)
t1 <- getCPUTime
printf "%6.2f s CPU\n" $ (fromIntegral (t1 - t0) / (10^12 :: Double)) :: IO ()
return ()
--------------------------------
manymult n = foldl1' (<>) (map rot2 angles) where
angles = toList $ linspace n (0,1)
rot2 :: Double -> Matrix Double
rot2 a = (3><3) [ c,0,s
, 0,1,0
,-s,0,c ]
where c = cos a
s = sin a
multb n = foldl1' (<>) (replicate (10^6) (ident n :: Matrix Double))
--------------------------------
manyvec0 xs = sum $ map (\x -> x + x**2 + x**3) xs
manyvec1 xs = sumElements $ fromRows $ map (\x -> fromList [x,x**2,x**3]) xs
manyvec5 xs = sumElements $ fromRows $ map (\x -> vec3 x (x**2) (x**3)) xs
manyvec2 xs = sum $ map (\x -> sqrt(x^2 + (x**2)^2 +(x**3)^2)) xs
manyvec3 xs = sum $ map (norm_2 . (\x -> fromList [x,x**2,x**3])) xs
manyvec4 xs = sum $ map (norm_2 . (\x -> vec3 x (x**2) (x**3))) xs
vec3 :: Double -> Double -> Double -> Vector Double
vec3 a b c = runSTVector $ do
v <- newUndefinedVector 3
writeVector v 0 a
writeVector v 1 b
writeVector v 2 c
return v
mkVecBench = do
let n = 1000000
xs = toList $ linspace n (0,1::Double)
putStr "\neval data... "; print (sum xs)
timeR "listproc " $ manyvec0 xs
timeR "fromList matrix " $ manyvec1 xs
timeR "vec3 matrix " $ manyvec5 xs
timeR "listproc norm " $ manyvec2 xs
timeR "norm fromList " $ manyvec3 xs
timeR "norm vec3 " $ manyvec4 xs
--------------------------------
subBench = do
putStrLn ""
let g = foldl1' (.) (replicate (10^5) (\v -> subVector 1 (size v -1) v))
time "0.1M subVector " (g (konst 1 (1+10^5) :: Vector Double) ! 0)
let f = foldl1' (.) (replicate (10^5) (fromRows.toRows))
time "subVector-join 3" (f (ident 3 :: Matrix Double) `atIndex` (0,0))
time "subVector-join 10" (f (ident 10 :: Matrix Double) `atIndex` (0,0))
--------------------------------
multBench = do
let a = ident 1000 :: Matrix Double
let b = ident 2000 :: Matrix Double
a `seq` b `seq` putStrLn ""
time "product of 1M different 3x3 matrices" (manymult (10^6))
putStrLn ""
time "product of 1M constant 1x1 matrices" (multb 1)
time "product of 1M constant 3x3 matrices" (multb 3)
--time "product of 1M constant 5x5 matrices" (multb 5)
time "product of 1M const. 10x10 matrices" (multb 10)
--time "product of 1M const. 15x15 matrices" (multb 15)
time "product of 1M const. 20x20 matrices" (multb 20)
--time "product of 1M const. 25x25 matrices" (multb 25)
putStrLn ""
time "product (1000 x 1000)<>(1000 x 1000)" (a<>a)
time "product (2000 x 2000)<>(2000 x 2000)" (b<>b)
--------------------------------
eigBench = do
let m = reshape 1000 (randomVector 777 Uniform (1000*1000))
s = m + tr m
m `seq` s `seq` putStrLn ""
time "eigenvalues symmetric 1000x1000" (eigenvaluesSH (trustSym m))
time "eigenvectors symmetric 1000x1000" (snd $ eigSH (trustSym m))
time "eigenvalues general 1000x1000" (eigenvalues m)
time "eigenvectors general 1000x1000" (snd $ eig m)
--------------------------------
svdBench = do
let a = reshape 500 (randomVector 777 Uniform (3000*500))
b = reshape 1000 (randomVector 777 Uniform (1000*1000))
fv (_,_,v) = v `atIndex` (0,0)
a `seq` b `seq` putStrLn ""
time "singular values 3000x500" (singularValues a)
time "thin svd 3000x500" (fv $ thinSVD a)
time "full svd 3000x500" (fv $ svd a)
time "singular values 1000x1000" (singularValues b)
time "full svd 1000x1000" (fv $ svd b)
--------------------------------
solveBenchN n = do
let x = uniformSample 777 (2*n) (replicate n (-1,1))
a = tr x <> x
b = asColumn $ randomVector 666 Uniform n
a `seq` b `seq` putStrLn ""
time ("svd solve " ++ show n) (linearSolveSVD a b)
time (" ls solve " ++ show n) (linearSolveLS a b)
time (" solve " ++ show n) (linearSolve a b)
-- time (" LU solve " ++ show n) (luSolve (luPacked a) b)
time ("LDL solve " ++ show n) (ldlSolve (ldlPacked (trustSym a)) b)
time ("cholSolve " ++ show n) (cholSolve (chol $ trustSym a) b)
solveBench = do
solveBenchN 500
solveBenchN 1000
solveBenchN 1500
--------------------------------
cholBenchN n = do
let x = uniformSample 777 (2*n) (replicate n (-1,1))
a = tr x <> x
a `seq` putStr ""
time ("chol " ++ show n) (chol $ trustSym a)
cholBench = do
putStrLn ""
cholBenchN 1200
cholBenchN 600
cholBenchN 300
-- cholBenchN 150
-- cholBenchN 50
--------------------------------------------------------------------------------
luBenchN f n x msg = do
let m = diagRect 1 (fromList (replicate n x)) n n
m `seq` putStr ""
time (msg ++ " "++ show n) (rnf $ f m)
luBench = do
putStrLn ""
luBenchN luPacked 1000 (5::R) "luPacked Double "
luBenchN luPacked' 1000 (5::R) "luPacked' Double "
luBenchN luPacked' 1000 (5::Mod 9973 I) "luPacked' I mod 9973"
luBenchN luPacked' 1000 (5::Mod 9973 Z) "luPacked' Z mod 9973"
luBenchN_2 f g n x msg = do
let m = diagRect 1 (fromList (replicate n x)) n n
b = flipud m
m `seq` b `seq` putStr ""
time (msg ++ " "++ show n) (f (g m) b)
luBench_2 = do
putStrLn ""
luBenchN_2 luSolve luPacked 500 (5::R) "luSolve .luPacked Double "
luBenchN_2 luSolve' luPacked' 500 (5::R) "luSolve'.luPacked' Double "
luBenchN_2 luSolve' luPacked' 500 (5::Mod 9973 I) "luSolve'.luPacked' I mod 9973"
luBenchN_2 luSolve' luPacked' 500 (5::Mod 9973 Z) "luSolve'.luPacked' Z mod 9973"
|