1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
{-# LANGUAGE CPP, FlexibleContexts, UndecidableInstances, FlexibleInstances, ScopedTypeVariables #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -fno-warn-missing-signatures #-}
-----------------------------------------------------------------------------
{- |
Module : Numeric.LinearAlgebra.Tests.Instances
Copyright : (c) Alberto Ruiz 2008
License : BSD3
Maintainer : Alberto Ruiz
Stability : provisional
Arbitrary instances for vectors, matrices.
-}
module Numeric.LinearAlgebra.Tests.Instances(
Sq(..), rSq,cSq,
Sq2WC(..), rSq2WC,cSq2WC,
Rot(..), rRot,cRot,
rHer,cHer,
WC(..), rWC,cWC,
SqWC(..), rSqWC, cSqWC, rSymWC, cSymWC,
PosDef(..), rPosDef, cPosDef,
Consistent(..), rConsist, cConsist,
RM,CM, rM,cM,
FM,ZM, fM,zM
) where
import System.Random
import Numeric.LinearAlgebra.HMatrix hiding (vector)
import Control.Monad(replicateM)
import Test.QuickCheck(Arbitrary,arbitrary,choose,vector,sized,shrink)
import GHC.TypeLits
import Data.Proxy (Proxy(..))
import qualified Numeric.LinearAlgebra.Static as Static
#if MIN_VERSION_base(4,11,0)
import Prelude hiding ((<>))
#endif
shrinkListElementwise :: (Arbitrary a) => [a] -> [[a]]
shrinkListElementwise [] = []
shrinkListElementwise (x:xs) = [ y:xs | y <- shrink x ]
++ [ x:ys | ys <- shrinkListElementwise xs ]
shrinkPair :: (Arbitrary a, Arbitrary b) => (a,b) -> [(a,b)]
shrinkPair (a,b) = [ (a,x) | x <- shrink b ] ++ [ (x,b) | x <- shrink a ]
chooseDim = sized $ \m -> choose (1,max 1 m)
instance (Field a, Arbitrary a) => Arbitrary (Vector a) where
arbitrary = do m <- chooseDim
l <- vector m
return $ fromList l
-- shrink any one of the components
shrink = map fromList . shrinkListElementwise . toList
instance KnownNat n => Arbitrary (Static.R n) where
arbitrary = do
l <- vector n
return (Static.fromList l)
where
n :: Int
n = fromIntegral (natVal (Proxy :: Proxy n))
shrink _v = []
instance (Element a, Arbitrary a) => Arbitrary (Matrix a) where
arbitrary = do
m <- chooseDim
n <- chooseDim
l <- vector (m*n)
return $ (m><n) l
-- shrink any one of the components
shrink a = map (rows a >< cols a)
. shrinkListElementwise
. concat . toLists
$ a
instance (KnownNat n, KnownNat m) => Arbitrary (Static.L m n) where
arbitrary = do
l <- vector (m * n)
return (Static.fromList l)
where
m :: Int
m = fromIntegral (natVal (Proxy :: Proxy m))
n :: Int
n = fromIntegral (natVal (Proxy :: Proxy n))
shrink _mat = []
-- a square matrix
newtype (Sq a) = Sq (Matrix a) deriving Show
instance (Element a, Arbitrary a) => Arbitrary (Sq a) where
arbitrary = do
n <- chooseDim
l <- vector (n*n)
return $ Sq $ (n><n) l
shrink (Sq a) = [ Sq b | b <- shrink a ]
-- a pair of square matrices
newtype (Sq2WC a) = Sq2WC (Matrix a, Matrix a) deriving Show
instance (ArbitraryField a, Numeric a) => Arbitrary (Sq2WC a) where
arbitrary = do
n <- chooseDim
l <- vector (n*n)
r <- vector (n*n)
l' <- makeWC $ (n><n) l
r' <- makeWC $ (n><n) r
return $ Sq2WC (l', r')
where
makeWC m = do
let (u,_,v) = svd m
n = rows m
sv' <- replicateM n (choose (1,100))
let s = diag (fromList sv')
return $ u <> real s <> tr v
-- a unitary matrix
newtype (Rot a) = Rot (Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Rot a) where
arbitrary = do
Sq m <- arbitrary
let (q,_) = qr m
return (Rot q)
-- a complex hermitian or real symmetric matrix
instance (Field a, Arbitrary a, Num (Vector a)) => Arbitrary (Herm a) where
arbitrary = do
Sq m <- arbitrary
let m' = m/2
return $ sym m'
class (Field a, Arbitrary a, Element (RealOf a), Random (RealOf a)) => ArbitraryField a
instance ArbitraryField Double
instance ArbitraryField (Complex Double)
-- a well-conditioned general matrix (the singular values are between 1 and 100)
newtype (WC a) = WC (Matrix a) deriving Show
instance (Numeric a, ArbitraryField a) => Arbitrary (WC a) where
arbitrary = do
m <- arbitrary
let (u,_,v) = svd m
r = rows m
c = cols m
n = min r c
sv' <- replicateM n (choose (1,100))
let s = diagRect 0 (fromList sv') r c
return $ WC (u <> real s <> tr v)
-- a well-conditioned square matrix (the singular values are between 1 and 100)
newtype (SqWC a) = SqWC (Matrix a) deriving Show
instance (ArbitraryField a, Numeric a) => Arbitrary (SqWC a) where
arbitrary = do
Sq m <- arbitrary
let (u,_,v) = svd m
n = rows m
sv' <- replicateM n (choose (1,100))
let s = diag (fromList sv')
return $ SqWC (u <> real s <> tr v)
-- a positive definite square matrix (the eigenvalues are between 0 and 100)
newtype (PosDef a) = PosDef (Matrix a) deriving Show
instance (Numeric a, ArbitraryField a, Num (Vector a))
=> Arbitrary (PosDef a) where
arbitrary = do
m <- arbitrary
let (_,v) = eigSH m
n = rows (unSym m)
l <- replicateM n (choose (0,100))
let s = diag (fromList l)
p = v <> real s <> tr v
return $ PosDef (0.5 * p + 0.5 * tr p)
-- a pair of matrices that can be multiplied
newtype (Consistent a) = Consistent (Matrix a, Matrix a) deriving Show
instance (Field a, Arbitrary a) => Arbitrary (Consistent a) where
arbitrary = do
n <- chooseDim
k <- chooseDim
m <- chooseDim
la <- vector (n*k)
lb <- vector (k*m)
return $ Consistent ((n><k) la, (k><m) lb)
shrink (Consistent (x,y)) = [ Consistent (u,v) | (u,v) <- shrinkPair (x,y) ]
type RM = Matrix Double
type CM = Matrix (Complex Double)
type FM = Matrix Float
type ZM = Matrix (Complex Float)
rM m = m :: RM
cM m = m :: CM
fM m = m :: FM
zM m = m :: ZM
rHer m = unSym m :: RM
cHer m = unSym m :: CM
rRot (Rot m) = m :: RM
cRot (Rot m) = m :: CM
rSq (Sq m) = m :: RM
cSq (Sq m) = m :: CM
rSq2WC (Sq2WC (a, b)) = (a, b) :: (RM, RM)
cSq2WC (Sq2WC (a, b)) = (a, b) :: (CM, CM)
rWC (WC m) = m :: RM
cWC (WC m) = m :: CM
rSqWC (SqWC m) = m :: RM
cSqWC (SqWC m) = m :: CM
rSymWC (SqWC m) = sym m :: Herm R
cSymWC (SqWC m) = sym m :: Herm C
rPosDef (PosDef m) = m :: RM
cPosDef (PosDef m) = m :: CM
rConsist (Consistent (a,b)) = (a,b::RM)
cConsist (Consistent (a,b)) = (a,b::CM)
|